summaryrefslogtreecommitdiffstats
path: root/sandbox/src/ipc_unittest.cc
blob: 60f326c25861efcf3f803d16affc8d8a2e70b656 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "sandbox/src/crosscall_client.h"
#include "sandbox/src/crosscall_server.h"
#include "sandbox/src/sharedmem_ipc_client.h"
#include "testing/gtest/include/gtest/gtest.h"


namespace sandbox {

// Helper function to make the fake shared memory with some
// basic elements initialized.
IPCControl* MakeChannels(size_t channel_size, size_t total_shared_size,
                         size_t* base_start) {
  // Allocate memory
  char* mem = new char[total_shared_size];
  memset(mem, 0, total_shared_size);

  // Calculate how many channels we can fit in the shared memory.
  total_shared_size -= offsetof(IPCControl, channels);
  size_t channel_count =
    total_shared_size / (sizeof(ChannelControl) + channel_size);

  // Calculate the start of the first channel.
  *base_start = (sizeof(ChannelControl)* channel_count) +
    offsetof(IPCControl, channels);

  // Setup client structure.
  IPCControl* client_control = reinterpret_cast<IPCControl*>(mem);
  client_control->channels_count = channel_count;

  return client_control;
}

TEST(IPCTest, ChannelMaker) {
  size_t channel_start = 0;
  IPCControl* client_control = MakeChannels(12*64, 4096, &channel_start);

  // Test that our testing rig is computing offsets properly. We should have
  // 5 channnels and the offset to the first channel is 108 bytes.
  ASSERT_TRUE(NULL != client_control);
  EXPECT_EQ(5, client_control->channels_count);
  EXPECT_EQ(108, channel_start);

  delete [] reinterpret_cast<char*>(client_control);
}

TEST(IPCTest, ClientLockUnlock) {
  // Make 7 channels of kIPCChannelSize (1kb) each. Test that we lock and
  // unlock channels properly.
  const size_t channel_size = kIPCChannelSize;
  size_t base_start = 0;
  IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);

  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    channel.channel_base = base_start;
    channel.state = kFreeChannel;
    base_start += channel_size;
  }

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  // Test that we lock the first 3 channels in sequence.
  void* buff0 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[0].channel_base == buff0);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  void* buff1 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff1);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  void* buff2 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[2].channel_base == buff2);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  // Test that we unlock and re-lock the right channel.
  client.FreeBuffer(buff1);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  void* buff2b = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff2b);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  client.FreeBuffer(buff0);
  EXPECT_EQ(kFreeChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  delete [] reinterpret_cast<char*>(client_control);
}

TEST(IPCTest, CrossCallStrPacking) {
  // This test tries the CrossCall object with null and non-null string
  // combination of parameters and verifies that the unpacker can read them
  // properly.
  const size_t channel_size = kIPCChannelSize;
  size_t base_start = 0;
  IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);
  client_control->server_alive = HANDLE(1);

  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    channel.channel_base = base_start;
    channel.state = kFreeChannel;
    channel.ping_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
    channel.pong_event = ::CreateEventW(NULL, FALSE, TRUE, NULL);
    base_start += channel_size;
  }

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  CrossCallReturn answer;
  uint32 tag1 = 666;
  const wchar_t text[] = L"98765 - 43210";
  std::wstring copied_text;
  CrossCallParamsEx* actual_params;

  CrossCall(client, tag1, text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(1, actual_params->GetParamsCount());
  EXPECT_EQ(tag1, actual_params->GetTag());
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));
  EXPECT_STREQ(text, copied_text.c_str());

  // Check with an empty string.
  uint32 tag2 = 777;
  const wchar_t* null_text = NULL;
  CrossCall(client, tag2, null_text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(1, actual_params->GetParamsCount());
  EXPECT_EQ(tag2, actual_params->GetTag());
  size_t param_size = 1;
  ArgType type = INVALID_TYPE;
  void* param_addr = actual_params->GetRawParameter(0, &param_size, &type);
  EXPECT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, param_size);
  EXPECT_EQ(WCHAR_TYPE, type);
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));

  uint32 tag3 = 888;
  param_size = 1;
  copied_text.clear();

  // Check with an empty string and a non-empty string.
  CrossCall(client, tag3, null_text, text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(2, actual_params->GetParamsCount());
  EXPECT_EQ(tag3, actual_params->GetTag());
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(0, &param_size, &type);
  EXPECT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, param_size);
  EXPECT_EQ(WCHAR_TYPE, type);
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));
  EXPECT_TRUE(actual_params->GetParameterStr(1, &copied_text));
  EXPECT_STREQ(text, copied_text.c_str());

  param_size = 1;
  std::wstring copied_text_p0, copied_text_p2;

  const wchar_t text2[] = L"AeFG";
  CrossCall(client, tag1, text2, null_text, text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(3, actual_params->GetParamsCount());
  EXPECT_EQ(tag1, actual_params->GetTag());
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text_p0));
  EXPECT_STREQ(text2, copied_text_p0.c_str());
  EXPECT_TRUE(actual_params->GetParameterStr(2, &copied_text_p2));
  EXPECT_STREQ(text, copied_text_p2.c_str());
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(1, &param_size, &type);
  EXPECT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, param_size);
  EXPECT_EQ(WCHAR_TYPE, type);

  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    ::CloseHandle(channel.ping_event);
    ::CloseHandle(channel.pong_event);
  }
  delete [] reinterpret_cast<char*>(client_control);
}

// This structure is passed to the mock server threads to simulate
// the server side IPC so it has the required kernel objects.
struct ServerEvents {
  HANDLE ping;
  HANDLE pong;
  volatile LONG* state;
  HANDLE mutex;
};

// This is the server thread that quicky answers an IPC and exits.
DWORD WINAPI QuickResponseServer(PVOID param) {
  ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
  DWORD wait_result = 0;
  wait_result = ::WaitForSingleObject(events->ping, INFINITE);
  ::InterlockedExchange(events->state, kAckChannel);
  ::SetEvent(events->pong);
  return wait_result;
}

class CrossCallParamsMock : public CrossCallParams {
 public:
  CrossCallParamsMock(uint32 tag, size_t params_count)
      :  CrossCallParams(tag, params_count) {
  }
 private:
  void* params[4];
};

void FakeOkAnswerInChannel(void* channel) {
  CrossCallReturn* answer = reinterpret_cast<CrossCallReturn*>(channel);
  answer->call_outcome = SBOX_ALL_OK;
}

// Create two threads that will quickly answer IPCs; the first one
// using channel 1 (channel 0 is busy) and one using channel 0. No time-out
// should occur.
TEST(IPCTest, ClientFastServer) {
  const size_t channel_size = kIPCChannelSize;
  size_t base_start = 0;
  IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);

  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    channel.channel_base = base_start;
    channel.state = kFreeChannel;
    channel.ping_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
    channel.pong_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
    base_start += channel_size;
  }

  client_control->server_alive = ::CreateMutex(NULL, FALSE, NULL);

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  ServerEvents events = {0};
  events.ping = client_control->channels[1].ping_event;
  events.pong = client_control->channels[1].pong_event;
  events.state = &client_control->channels[1].state;

  HANDLE t1 = ::CreateThread(NULL, 0, QuickResponseServer, &events, 0, NULL);
  ASSERT_TRUE(NULL != t1);
  ::CloseHandle(t1);

  void* buff0 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[0].channel_base == buff0);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  void* buff1 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff1);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  EXPECT_EQ(0, client_control->channels[1].ipc_tag);

  uint32 tag = 7654;
  CrossCallReturn answer;
  CrossCallParamsMock* params1 = new(buff1) CrossCallParamsMock(tag, 1);
  FakeOkAnswerInChannel(buff1);

  ResultCode result = client.DoCall(params1, &answer);
  if (SBOX_ERROR_CHANNEL_ERROR != result)
    client.FreeBuffer(buff1);

  EXPECT_TRUE(SBOX_ALL_OK == result);
  EXPECT_EQ(tag, client_control->channels[1].ipc_tag);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  HANDLE t2 = ::CreateThread(NULL, 0, QuickResponseServer, &events, 0, NULL);
  ASSERT_TRUE(NULL != t2);
  ::CloseHandle(t2);

  client.FreeBuffer(buff0);
  events.ping = client_control->channels[0].ping_event;
  events.pong = client_control->channels[0].pong_event;
  events.state = &client_control->channels[0].state;

  tag = 4567;
  CrossCallParamsMock* params2 = new(buff0) CrossCallParamsMock(tag, 1);
  FakeOkAnswerInChannel(buff0);

  result = client.DoCall(params2, &answer);
  if (SBOX_ERROR_CHANNEL_ERROR != result)
    client.FreeBuffer(buff0);

  EXPECT_TRUE(SBOX_ALL_OK == result);
  EXPECT_EQ(tag, client_control->channels[0].ipc_tag);
  EXPECT_EQ(kFreeChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    ::CloseHandle(channel.ping_event);
    ::CloseHandle(channel.pong_event);
  }

  ::CloseHandle(client_control->server_alive);
  delete [] reinterpret_cast<char*>(client_control);
}

// This is the server thread that very slowly answers an IPC and exits. Note
// that the pong event needs to be signaled twice.
DWORD WINAPI SlowResponseServer(PVOID param) {
  ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
  DWORD wait_result = 0;
  wait_result = ::WaitForSingleObject(events->ping, INFINITE);
  ::Sleep(kIPCWaitTimeOut1 + kIPCWaitTimeOut2 + 200);
  ::InterlockedExchange(events->state, kAckChannel);
  ::SetEvent(events->pong);
  return wait_result;
}

// This thread's job is to keep the mutex locked.
DWORD WINAPI MainServerThread(PVOID param) {
  ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
  DWORD wait_result = 0;
  wait_result = ::WaitForSingleObject(events->mutex, INFINITE);
  Sleep(kIPCWaitTimeOut1 * 20);
  return wait_result;
}

// Creates a server thread that answers the IPC so slow that is guaranteed to
// trigger the time-out code path in the client. A second thread is created
// to hold locked the server_alive mutex: this signals the client that the
// server is not dead and it retries the wait.
TEST(IPCTest, ClientSlowServer) {
  const size_t channel_size = kIPCChannelSize;
  size_t base_start = 0;
  IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);

  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    channel.channel_base = base_start;
    channel.state = kFreeChannel;
    channel.ping_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
    channel.pong_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
    base_start += channel_size;
  }

  client_control->server_alive = ::CreateMutex(NULL, FALSE, NULL);

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  ServerEvents events = {0};
  events.ping = client_control->channels[0].ping_event;
  events.pong = client_control->channels[0].pong_event;
  events.state = &client_control->channels[0].state;

  HANDLE t1 = ::CreateThread(NULL, 0, SlowResponseServer, &events, 0, NULL);
  ASSERT_TRUE(NULL != t1);
  ::CloseHandle(t1);

  ServerEvents events2 = {0};
  events2.pong = events.pong;
  events2.mutex = client_control->server_alive;

  HANDLE t2 = ::CreateThread(NULL, 0, MainServerThread, &events2, 0, NULL);
  ASSERT_TRUE(NULL != t2);
  ::CloseHandle(t2);

  ::Sleep(1);

  void* buff0 = client.GetBuffer();
  uint32 tag = 4321;
  CrossCallReturn answer;
  CrossCallParamsMock* params1 = new(buff0) CrossCallParamsMock(tag, 1);
  FakeOkAnswerInChannel(buff0);

  ResultCode result = client.DoCall(params1, &answer);
  if (SBOX_ERROR_CHANNEL_ERROR != result)
    client.FreeBuffer(buff0);

  EXPECT_TRUE(SBOX_ALL_OK == result);
  EXPECT_EQ(tag, client_control->channels[0].ipc_tag);
  EXPECT_EQ(kFreeChannel, client_control->channels[0].state);

  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    ::CloseHandle(channel.ping_event);
    ::CloseHandle(channel.pong_event);
  }
  ::CloseHandle(client_control->server_alive);
  delete [] reinterpret_cast<char*>(client_control);
}

}  // namespace sandbox