summaryrefslogtreecommitdiffstats
path: root/sandbox/src/policy_low_level.cc
blob: e567bd89b51eaca35eee7e3185d25b49d6deeeeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <string>
#include <map>

#include "sandbox/src/policy_low_level.h"
#include "base/basictypes.h"

namespace {

  // A single rule can use at most this amount of memory.
  const size_t kRuleBufferSize = 1024*4;

  // The possible states of the string matching opcode generator.
  enum {
    PENDING_NONE,
    PENDING_ASTERISK,    // Have seen an '*' but have not generated an opcode.
    PENDING_QMARK,       // Have seen an '?' but have not generated an opcode.
  };

  // The category of the last character seen by the string matching opcode
  // generator.
  const uint32 kLastCharIsNone = 0;
  const uint32 kLastCharIsAlpha = 1;
  const uint32 kLastCharIsWild = 2;
  const uint32 kLastCharIsAsterisk = kLastCharIsWild + 4;
  const uint32 kLastCharIsQuestionM = kLastCharIsWild + 8;
}

namespace sandbox {

// Adding a rule is nothing more than pushing it into an stl container. Done()
// is called for the rule in case the code that made the rule in the first
// place has not done it.
bool LowLevelPolicy::AddRule(int service, PolicyRule* rule) {
  if (!rule->Done()) {
    return false;
  }

  PolicyRule* local_rule = new PolicyRule(*rule);
  RuleNode node = {local_rule, service};
  rules_.push_back(node);
  return true;
}

LowLevelPolicy::~LowLevelPolicy() {
  // Delete all the rules.
  typedef std::list<RuleNode> RuleNodes;
  for (RuleNodes::iterator it = rules_.begin(); it != rules_.end(); ++it) {
    delete it->rule;
  }
}

// Here is where the heavy byte shuffling is done. We take all the rules and
// 'compile' them into a single memory region. Now, the rules are in random
// order so the first step is to reorganize them into a stl map that is keyed
// by the service id and as a value contains a list with all the rules that
// belong to that service. Then we enter the big for-loop where we carve a
// memory zone for the opcodes and the data and call RebindCopy on each rule
// so they all end up nicely packed in the policy_store_.
bool LowLevelPolicy::Done() {
  typedef std::list<RuleNode> RuleNodes;
  typedef std::list<const PolicyRule*> RuleList;
  typedef std::map<uint32, RuleList> Mmap;
  Mmap mmap;

  for (RuleNodes::iterator it = rules_.begin(); it != rules_.end(); ++it) {
    mmap[it->service].push_back(it->rule);
  }

  PolicyBuffer* current_buffer = &policy_store_->data[0];
  char* buffer_end = reinterpret_cast<char*>(current_buffer) +
    policy_store_->data_size;
  size_t avail_size =  policy_store_->data_size;

  for (Mmap::iterator it = mmap.begin(); it != mmap.end(); ++it) {
    uint32 service = (*it).first;
    if (service > kMaxServiceCount) {
      return false;
    }
    policy_store_->entry[service] = current_buffer;

    RuleList::iterator rules_it = (*it).second.begin();
    RuleList::iterator rules_it_end = (*it).second.end();

    size_t svc_opcode_count = 0;

    for (; rules_it != rules_it_end; ++rules_it) {
      const PolicyRule* rule = (*rules_it);
      size_t op_count = rule->GetOpcodeCount();

      size_t opcodes_size = op_count * sizeof(PolicyOpcode);
      if (avail_size < opcodes_size) {
        return false;
      }
      size_t data_size = avail_size - opcodes_size;
      PolicyOpcode* opcodes_start = &current_buffer->opcodes[svc_opcode_count];
      if (!rule->RebindCopy(opcodes_start, opcodes_size,
                            buffer_end, &data_size)) {
        return false;
      }
      size_t used = avail_size - data_size;
      buffer_end -= used;
      avail_size -= used;
      svc_opcode_count += op_count;
    }

    current_buffer->opcode_count += svc_opcode_count;
    size_t policy_byte_count = (svc_opcode_count * sizeof(PolicyOpcode))
                                / sizeof(current_buffer[0]);
    current_buffer = &current_buffer[policy_byte_count + 1];
  }

  return true;
}

PolicyRule::PolicyRule(EvalResult action)
    : action_(action), done_(false) {
  char* memory = new char[sizeof(PolicyBuffer) + kRuleBufferSize];
  buffer_ = reinterpret_cast<PolicyBuffer*>(memory);
  buffer_->opcode_count = 0;
  opcode_factory_ = new OpcodeFactory(buffer_,
                                      kRuleBufferSize + sizeof(PolicyOpcode));
}

PolicyRule::PolicyRule(const PolicyRule& other) {
  if (this == &other)
    return;
  action_ = other.action_;
  done_ = other.done_;
  size_t buffer_size = sizeof(PolicyBuffer) + kRuleBufferSize;
  char* memory = new char[buffer_size];
  buffer_ = reinterpret_cast<PolicyBuffer*>(memory);
  memcpy(buffer_, other.buffer_, buffer_size);

  char* opcode_buffer = reinterpret_cast<char*>(&buffer_->opcodes[0]);
  char* buffer_end = &opcode_buffer[kRuleBufferSize + sizeof(PolicyOpcode)];
  char* next_opcode = &opcode_buffer[GetOpcodeCount() * sizeof(PolicyOpcode)];
  opcode_factory_ = new OpcodeFactory(next_opcode, buffer_end - next_opcode);
}

// This function get called from a simple state machine implemented in
// AddStringMatch() which passes the current state (in state) and it passes
// true in last_call if AddStringMatch() has finished processing the input
// pattern string and this would be the last call to generate any pending
// opcode. The skip_count is the currently accumulated number of '?' seen so
// far and once the associated opcode is generated this function sets it back
// to zero.
bool PolicyRule::GenStringOpcode(RuleType rule_type,
                                 StringMatchOptions match_opts,
                                 uint16 parameter, int state, bool last_call,
                                 int* skip_count, std::wstring* fragment) {

  // The last opcode must:
  //   1) Always clear the context.
  //   2) Preserve the negation.
  //   3) Remove the 'OR' mode flag.
  uint32 options = kPolNone;
  if (last_call) {
    if (IF_NOT == rule_type) {
      options = kPolClearContext | kPolNegateEval;
    } else {
      options = kPolClearContext;
    }
  } else if (IF_NOT == rule_type) {
    options = kPolUseOREval | kPolNegateEval;
  }

  PolicyOpcode* op = NULL;

  // The fragment string contains the accumulated characters to match with, it
  // never contains wildcards (unless they have been escaped) and while there
  // is no fragment there is no new string match opcode to generate.
  if (fragment->empty()) {
    // There is no new opcode to generate but in the last call we have to fix
    // the previous opcode because it was really the last but we did not know
    // it at that time.
    if (last_call && (buffer_->opcode_count > 0)) {
      op = &buffer_->opcodes[buffer_->opcode_count - 1];
      op->SetOptions(options);
    }
    return true;
  }

  if (PENDING_ASTERISK == state) {
    if (last_call) {
      op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(),
                                               kSeekToEnd, match_opts,
                                               options);
    } else {
      op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(),
                                               kSeekForward, match_opts,
                                               options);
    }

  } else if (PENDING_QMARK == state) {
    op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(),
                                             *skip_count, match_opts, options);
    *skip_count = 0;
  } else {
    if (last_call) {
      match_opts = static_cast<StringMatchOptions>(EXACT_LENGHT | match_opts);
    }
    op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(), 0,
                                             match_opts, options);
  }
  if (NULL == op) {
    return false;
  }
  ++buffer_->opcode_count;
  fragment->clear();
  return true;
}

bool PolicyRule::AddStringMatch(RuleType rule_type, int16 parameter,
                                const wchar_t* string,
                                StringMatchOptions match_opts) {
  if (done_) {
    // Do not allow to add more rules after generating the action opcode.
    return false;
  }

  const wchar_t* current_char = string;
  uint32 last_char = kLastCharIsNone;
  int state = PENDING_NONE;
  int skip_count = 0;       // counts how many '?' we have seen in a row.
  std::wstring fragment;    // accumulates the non-wildcard part of the string.

  while (L'\0' != *current_char) {
    switch (*current_char) {
      case L'*':
        if (kLastCharIsWild & last_char) {
          // '**' and '&*' is an error.
          return false;
        }
        if (!GenStringOpcode(rule_type, match_opts, parameter,
                             state, false, &skip_count, &fragment)) {
          return false;
        }
        last_char = kLastCharIsAsterisk;
        state = PENDING_ASTERISK;
        break;
      case L'?':
        if (kLastCharIsAsterisk == last_char) {
          // '*?' is an error.
          return false;
        }
        if (!GenStringOpcode(rule_type, match_opts, parameter,
                             state, false, &skip_count, &fragment)) {
          return false;
        }
        ++skip_count;
        last_char = kLastCharIsQuestionM;
        state = PENDING_QMARK;
        break;
      case L'/':
        // Note: "/?" is an escaped '?'. Eat the slash and fall through.
        if (L'?' == current_char[1]) {
          ++current_char;
        }
      default:
        fragment += *current_char;
        last_char = kLastCharIsAlpha;
    }
    ++current_char;
  }

  if (!GenStringOpcode(rule_type, match_opts, parameter,
                       state, true, &skip_count, &fragment)) {
    return false;
  }
  return true;
}

bool PolicyRule::AddNumberMatch(RuleType rule_type, int16 parameter,
                                unsigned long number, RuleOp comparison_op) {
  if (done_) {
    // Do not allow to add more rules after generating the action opcode.
    return false;
  }
  uint32 opts = (rule_type == IF_NOT)? kPolNegateEval : kPolNone;

  if (EQUAL == comparison_op) {
    if (NULL == opcode_factory_->MakeOpNumberMatch(parameter, number, opts)) {
      return false;
    }
  } else if (AND == comparison_op) {
    if (NULL == opcode_factory_->MakeOpUlongAndMatch(parameter, number, opts)) {
      return false;
    }
  }
  ++buffer_->opcode_count;
  return true;
}

bool PolicyRule::Done() {
  if (done_) {
    return true;
  }
  if (NULL == opcode_factory_->MakeOpAction(action_, kPolNone)) {
    return false;
  }
  ++buffer_->opcode_count;
  done_ = true;
  return true;
}

bool PolicyRule::RebindCopy(PolicyOpcode* opcode_start, size_t opcode_size,
                            char* data_start, size_t* data_size) const {
  size_t count = buffer_->opcode_count;
  for (size_t ix = 0; ix != count; ++ix) {
    if (opcode_size < sizeof(PolicyOpcode)) {
      return false;
    }
    PolicyOpcode& opcode = buffer_->opcodes[ix];
    *opcode_start = opcode;
    if (OP_WSTRING_MATCH == opcode.GetID()) {
      // For this opcode argument 0 is a delta to the string and argument 1
      // is the length (in chars) of the string.
      const wchar_t* str = opcode.GetRelativeString(0);
      size_t str_len;
      opcode.GetArgument(1, &str_len);
      str_len = str_len * sizeof(wchar_t);
      if ((*data_size) < str_len) {
        return false;
      }
      *data_size -= str_len;
      data_start -= str_len;
      memcpy(data_start, str, str_len);
      // Recompute the string displacement
      ptrdiff_t delta = data_start - reinterpret_cast<char*>(opcode_start);
      opcode_start->SetArgument(0, delta);
    }
    ++opcode_start;
    opcode_size -= sizeof(PolicyOpcode);
  }

  return true;
}

PolicyRule::~PolicyRule() {
  delete [] reinterpret_cast<char*>(buffer_);
  delete opcode_factory_;
}

}  // namespace sandbox