summaryrefslogtreecommitdiffstats
path: root/sandbox/src/policy_opcodes_unittest.cc
blob: 3ac1e8fc21c6f729fcce79996b5b48cd9d6231e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "sandbox/src/sandbox_types.h"
#include "sandbox/src/sandbox_nt_types.h"
#include "sandbox/src/policy_engine_params.h"
#include "sandbox/src/policy_engine_opcodes.h"
#include "testing/gtest/include/gtest/gtest.h"


#define INIT_GLOBAL_RTL(member) \
  g_nt.##member = reinterpret_cast<##member##Function>( \
  ::GetProcAddress(ntdll, #member)); \
  if (NULL == g_nt.##member) \
  return false

namespace sandbox {

SANDBOX_INTERCEPT NtExports g_nt;

bool SetupNtdllImports() {
    HMODULE ntdll = ::GetModuleHandle(kNtdllName);

    INIT_GLOBAL_RTL(RtlAllocateHeap);
    INIT_GLOBAL_RTL(RtlAnsiStringToUnicodeString);
    INIT_GLOBAL_RTL(RtlCompareUnicodeString);
    INIT_GLOBAL_RTL(RtlCreateHeap);
    INIT_GLOBAL_RTL(RtlDestroyHeap);
    INIT_GLOBAL_RTL(RtlFreeHeap);
    INIT_GLOBAL_RTL(_strnicmp);
    INIT_GLOBAL_RTL(strlen);
    INIT_GLOBAL_RTL(wcslen);

  return true;
}

TEST(PolicyEngineTest, ParameterSetTest) {
  void* pv1 = reinterpret_cast<void*>(0x477EAA5);
  const void* pv2 = reinterpret_cast<void*>(0x987654);
  ParameterSet pset1 = ParamPickerMake(pv1);
  ParameterSet pset2 = ParamPickerMake(pv2);

  // Test that we can store and retrieve a void pointer:
  const void* result1 =0;
  unsigned long result2 = 0;
  EXPECT_TRUE(pset1.Get(&result1));
  EXPECT_TRUE(pv1 == result1);
  EXPECT_FALSE(pset1.Get(&result2));
  EXPECT_TRUE(pset2.Get(&result1));
  EXPECT_TRUE(pv2 == result1);
  EXPECT_FALSE(pset2.Get(&result2));

  // Test that we can store and retrieve a ulong:
  unsigned long number = 12747;
  ParameterSet pset3 = ParamPickerMake(number);
  EXPECT_FALSE(pset3.Get(&result1));
  EXPECT_TRUE(pset3.Get(&result2));
  EXPECT_EQ(number, result2);

  // Test that we can store and retrieve a string:
  const wchar_t* txt = L"S231L";
  ParameterSet pset4 = ParamPickerMake(txt);
  const wchar_t* result3 = NULL;
  EXPECT_TRUE(pset4.Get(&result3));
  EXPECT_EQ(0, wcscmp(txt, result3));
}

TEST(PolicyEngineTest, OpcodeConstraints) {
  // Test that PolicyOpcode has no virtual functions
  // because these objects are copied over to other processes
  // so they cannot have vtables.
  EXPECT_FALSE(__is_polymorphic(PolicyOpcode));
  // Keep developers from adding smarts to the opcodes which should
  // be pretty much a bag of bytes with a OO interface.
  EXPECT_TRUE(__has_trivial_destructor(PolicyOpcode));
  EXPECT_TRUE(__has_trivial_constructor(PolicyOpcode));
  EXPECT_TRUE(__has_trivial_copy(PolicyOpcode));
}

TEST(PolicyEngineTest, TrueFalseOpcodes) {
  void* dummy = NULL;
  ParameterSet ppb1 = ParamPickerMake(dummy);
  char memory[1024];
  OpcodeFactory opcode_maker(memory, sizeof(memory));

  // This opcode always evaluates to true.
  PolicyOpcode* op1 = opcode_maker.MakeOpAlwaysFalse(kPolNone);
  EXPECT_EQ(EVAL_FALSE, op1->Evaluate(&ppb1, 1, NULL));
  EXPECT_FALSE(op1->IsAction());

  // This opcode always evaluates to false.
  PolicyOpcode* op2 = opcode_maker.MakeOpAlwaysTrue(kPolNone);
  EXPECT_EQ(EVAL_TRUE, op2->Evaluate(&ppb1, 1, NULL));

  // Nulls not allowed on the params.
  EXPECT_EQ(EVAL_ERROR, op2->Evaluate(NULL, 0, NULL));
  EXPECT_EQ(EVAL_ERROR, op2->Evaluate(NULL, 1, NULL));

  // True and False opcodes do not 'require' a number of parameters
  EXPECT_EQ(EVAL_TRUE, op2->Evaluate(&ppb1, 0, NULL));
  EXPECT_EQ(EVAL_TRUE, op2->Evaluate(&ppb1, 1, NULL));

  // Test Inverting the logic. Note that inversion is done outside
  // any particular opcode evaluation so no need to repeat for all
  // opcodes.
  PolicyOpcode* op3 = opcode_maker.MakeOpAlwaysFalse(kPolNegateEval);
  EXPECT_EQ(EVAL_TRUE, op3->Evaluate(&ppb1, 1, NULL));
  PolicyOpcode* op4 = opcode_maker.MakeOpAlwaysTrue(kPolNegateEval);
  EXPECT_EQ(EVAL_FALSE, op4->Evaluate(&ppb1, 1, NULL));

  // Test that we clear the match context
  PolicyOpcode* op5 = opcode_maker.MakeOpAlwaysTrue(kPolClearContext);
  MatchContext context;
  context.position = 1;
  context.options = kPolUseOREval;
  EXPECT_EQ(EVAL_TRUE, op5->Evaluate(&ppb1, 1, &context));
  EXPECT_EQ(0, context.position);
  MatchContext context2;
  EXPECT_EQ(context2.options, context.options);
}

TEST(PolicyEngineTest, OpcodeMakerCase1) {
  // Testing that the opcode maker does not overrun the
  // supplied buffer. It should only be able to make 'count' opcodes.
  void* dummy = NULL;
  ParameterSet ppb1 = ParamPickerMake(dummy);

  char memory[256];
  OpcodeFactory opcode_maker(memory, sizeof(memory));
  size_t count = sizeof(memory) / sizeof(PolicyOpcode);

  for (size_t ix =0; ix != count; ++ix) {
     PolicyOpcode* op = opcode_maker.MakeOpAlwaysFalse(kPolNone);
     ASSERT_TRUE(NULL != op);
     EXPECT_EQ(EVAL_FALSE, op->Evaluate(&ppb1, 1, NULL));
  }
  // There should be no room more another opcode:
  PolicyOpcode* op1 = opcode_maker.MakeOpAlwaysFalse(kPolNone);
  ASSERT_TRUE(NULL == op1);
}

TEST(PolicyEngineTest, OpcodeMakerCase2) {
  SetupNtdllImports();
  // Testing that the opcode maker does not overrun the
  // supplied buffer. It should only be able to make 'count' opcodes.
  // The difference with the previous test is that this opcodes allocate
  // the string 'txt2' inside the same buffer.
  const wchar_t* txt1 = L"1234";
  const wchar_t txt2[] = L"123";

  ParameterSet ppb1 = ParamPickerMake(txt1);
  MatchContext mc1;

  char memory[256];
  OpcodeFactory opcode_maker(memory, sizeof(memory));
  size_t count = sizeof(memory) / (sizeof(PolicyOpcode) + sizeof(txt2));

  // Test that it does not overrun the buffer.
  for (size_t ix =0; ix != count; ++ix) {
    PolicyOpcode* op = opcode_maker.MakeOpWStringMatch(0, txt2, 0,
                                                       CASE_SENSITIVE,
                                                       kPolClearContext);
    ASSERT_TRUE(NULL != op);
    EXPECT_EQ(EVAL_TRUE, op->Evaluate(&ppb1, 1, &mc1));
  }

  // There should be no room more another opcode:
  PolicyOpcode* op1 = opcode_maker.MakeOpWStringMatch(0, txt2, 0,
                                                      CASE_SENSITIVE,
                                                      kPolNone);
  ASSERT_TRUE(NULL == op1);
}

TEST(PolicyEngineTest, IntegerOpcodes) {
  const wchar_t* txt = L"abcdef";
  unsigned long num1 = 42;
  unsigned long num2 = 113377;

  ParameterSet pp_wrong1 = ParamPickerMake(txt);
  ParameterSet pp_num1 = ParamPickerMake(num1);
  ParameterSet pp_num2 = ParamPickerMake(num2);

  char memory[128];
  OpcodeFactory opcode_maker(memory, sizeof(memory));

  // Test basic match for unsigned longs 42 == 42 and 42 != 113377.
  PolicyOpcode* op_m42 = opcode_maker.MakeOpNumberMatch(0, unsigned long(42),
                                                        kPolNone);
  EXPECT_EQ(EVAL_TRUE, op_m42->Evaluate(&pp_num1, 1, NULL));
  EXPECT_EQ(EVAL_FALSE, op_m42->Evaluate(&pp_num2, 1, NULL));
  EXPECT_EQ(EVAL_ERROR, op_m42->Evaluate(&pp_wrong1, 1, NULL));

  // Test basic match for void pointers.
  const void* vp = NULL;
  ParameterSet pp_num3 = ParamPickerMake(vp);
  PolicyOpcode* op_vp_null = opcode_maker.MakeOpVoidPtrMatch(0, NULL,
                                                             kPolNone);
  EXPECT_EQ(EVAL_TRUE, op_vp_null->Evaluate(&pp_num3, 1, NULL));
  EXPECT_EQ(EVAL_FALSE, op_vp_null->Evaluate(&pp_num1, 1, NULL));
  EXPECT_EQ(EVAL_ERROR, op_vp_null->Evaluate(&pp_wrong1, 1, NULL));

  // Basic range test [41 43] (inclusive).
  PolicyOpcode* op_range1 = opcode_maker.MakeOpUlongMatchRange(0, 41, 43,
                                                               kPolNone);
  EXPECT_EQ(EVAL_TRUE, op_range1->Evaluate(&pp_num1, 1, NULL));
  EXPECT_EQ(EVAL_FALSE, op_range1->Evaluate(&pp_num2, 1, NULL));
  EXPECT_EQ(EVAL_ERROR, op_range1->Evaluate(&pp_wrong1, 1, NULL));
}

TEST(PolicyEngineTest, LogicalOpcodes) {
  char memory[128];
  OpcodeFactory opcode_maker(memory, sizeof(memory));

  unsigned long num1 = 0x10100702;
  ParameterSet pp_num1 = ParamPickerMake(num1);

  PolicyOpcode* op_and1 = opcode_maker.MakeOpUlongAndMatch(0, 0x00100000,
                                                           kPolNone);
  EXPECT_EQ(EVAL_TRUE, op_and1->Evaluate(&pp_num1, 1, NULL));
  PolicyOpcode* op_and2 = opcode_maker.MakeOpUlongAndMatch(0, 0x00000001,
                                                           kPolNone);
  EXPECT_EQ(EVAL_FALSE, op_and2->Evaluate(&pp_num1, 1, NULL));
}

TEST(PolicyEngineTest, WCharOpcodes1) {
  SetupNtdllImports();

  const wchar_t* txt1 = L"the quick fox jumps over the lazy dog";
  const wchar_t txt2[] = L"the quick";
  const wchar_t txt3[] = L" fox jumps";
  const wchar_t txt4[] = L"the lazy dog";
  const wchar_t txt5[] = L"jumps over";
  const wchar_t txt6[] = L"g";

  ParameterSet pp_tc1 = ParamPickerMake(txt1);
  char memory[512];
  OpcodeFactory opcode_maker(memory, sizeof(memory));

  PolicyOpcode* op1 = opcode_maker.MakeOpWStringMatch(0, txt2, 0,
                                                      CASE_SENSITIVE,
                                                      kPolNone);

  // Simplest substring match from pos 0. It should be a successful match
  // and the match context should be updated.
  MatchContext mc1;
  EXPECT_EQ(EVAL_TRUE, op1->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_TRUE(_countof(txt2) == mc1.position + 1);

  // Matching again should fail and the context should be unmodified.
  EXPECT_EQ(EVAL_FALSE, op1->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_TRUE(_countof(txt2) == mc1.position + 1);

  // Using the same match context we should continue where we left
  // in the previous successful match,
  PolicyOpcode* op3 = opcode_maker.MakeOpWStringMatch(0, txt3, 0,
                                                      CASE_SENSITIVE,
                                                      kPolNone);
  EXPECT_EQ(EVAL_TRUE, op3->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_TRUE(_countof(txt3) + _countof(txt2) == mc1.position + 2);

  // We now keep on matching but now we skip 6 characters which means
  // we skip the string ' over '. And we zero the match context. This is
  // the primitive that we use to build '??'.
  PolicyOpcode* op4 = opcode_maker.MakeOpWStringMatch(0, txt4, 6,
                                                      CASE_SENSITIVE,
                                                      kPolClearContext);
  EXPECT_EQ(EVAL_TRUE, op4->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_EQ(0, mc1.position);

  // Test that we can properly match the last part of the string
  PolicyOpcode* op4b = opcode_maker.MakeOpWStringMatch(0, txt4, kSeekToEnd,
                                                       CASE_SENSITIVE,
                                                       kPolClearContext);
  EXPECT_EQ(EVAL_TRUE, op4b->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_EQ(0, mc1.position);

  // Test matching 'jumps over' over the entire string. This is the
  // primitive we build '*' from.
  PolicyOpcode* op5 = opcode_maker.MakeOpWStringMatch(0, txt5, kSeekForward,
                                                      CASE_SENSITIVE, kPolNone);
  EXPECT_EQ(EVAL_TRUE, op5->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_EQ(24, mc1.position);

  // Test that we don't match because it is not at the end of the string
  PolicyOpcode* op5b = opcode_maker.MakeOpWStringMatch(0, txt5, kSeekToEnd,
                                                       CASE_SENSITIVE,
                                                       kPolNone);
  EXPECT_EQ(EVAL_FALSE, op5b->Evaluate(&pp_tc1, 1, &mc1));

  // Test that we function if the string does not fit. In this case we
  // try to match 'the lazy dog' against 'he lazy dog'.
  PolicyOpcode* op6 = opcode_maker.MakeOpWStringMatch(0, txt4, 2,
                                                      CASE_SENSITIVE, kPolNone);
  EXPECT_EQ(24, mc1.position);

  // Testing matching against 'g' which should be the last char.
  MatchContext mc2;
  PolicyOpcode* op7 = opcode_maker.MakeOpWStringMatch(0, txt6, kSeekForward,
                                                      CASE_SENSITIVE, kPolNone);
  EXPECT_EQ(EVAL_TRUE, op7->Evaluate(&pp_tc1, 1, &mc2));

  // Trying to match again should fail since we are in the last char.
  // This also covers a couple of boundary conditions.
  EXPECT_EQ(EVAL_FALSE, op7->Evaluate(&pp_tc1, 1, &mc2));
}

TEST(PolicyEngineTest, WCharOpcodes2) {
  SetupNtdllImports();

  const wchar_t* path1 = L"c:\\documents and settings\\Microsoft\\BLAH.txt";
  const wchar_t txt1[] = L"Settings\\microsoft";
  ParameterSet pp_tc1 = ParamPickerMake(path1);

  char memory[256];
  OpcodeFactory opcode_maker(memory, sizeof(memory));
  MatchContext mc1;

  // Testing case-insensitive does not buy us much since it this option
  // is just passed to the Microsoft API that we use normally, but just for
  // coverage, here it is:
  PolicyOpcode* op1s = opcode_maker.MakeOpWStringMatch(0, txt1, kSeekForward,
                                                      CASE_SENSITIVE, kPolNone);
  PolicyOpcode* op1i = opcode_maker.MakeOpWStringMatch(0, txt1, kSeekForward,
                                                       CASE_INSENSITIVE,
                                                       kPolNone);
  EXPECT_EQ(EVAL_FALSE, op1s->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_EQ(EVAL_TRUE, op1i->Evaluate(&pp_tc1, 1, &mc1));
  EXPECT_EQ(35, mc1.position);
}

TEST(PolicyEngineTest, ActionOpcodes) {
  char memory[256];
  OpcodeFactory opcode_maker(memory, sizeof(memory));
  MatchContext mc1;
  void* dummy = NULL;
  ParameterSet ppb1 = ParamPickerMake(dummy);

  PolicyOpcode* op1 = opcode_maker.MakeOpAction(ASK_BROKER, kPolNone);
  EXPECT_TRUE(op1->IsAction());
  EXPECT_EQ(ASK_BROKER, op1->Evaluate(&ppb1, 1, &mc1));
}

}  // namespace sandbox