summaryrefslogtreecommitdiffstats
path: root/sandbox/src/sharedmem_ipc_client.h
blob: 90d0022318cd31f57e4c676fac4757d5205ce6f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef SANDBOX_SRC_SHAREDMEM_IPC_CLIENT_H__
#define SANDBOX_SRC_SHAREDMEM_IPC_CLIENT_H__

#include "sandbox/src/crosscall_params.h"
#include "sandbox/src/sandbox.h"

// IPC transport implementation that uses shared memory.
// This is the client side
//
// The shared memory is divided on blocks called channels, and potentially
// it can perform as many concurrent IPC calls as channels. The IPC over
// each channel is strictly synchronous for the client.
//
// Each channel as a channel control section associated with. Each control
// section has two kernel events (known as ping and pong) and a integer
// variable that maintains a state
//
// this is the state diagram of a channel:
//
//                   locked                in service
//     kFreeChannel---------->BusyChannel-------------->kAckChannel
//          ^                                                 |
//          |_________________________________________________|
//                             answer ready
//
// The protocol is as follows:
//   1) client finds a free channel: state = kFreeChannel
//   2) does an atomic compare-and-swap, now state = BusyChannel
//   3) client writes the data into the channel buffer
//   4) client signals the ping event and waits (blocks) on the pong event
//   5) eventually the server signals the pong event
//   6) the client awakes and reads the answer from the same channel
//   7) the client updates its InOut parameters with the new data from the
//      shared memory section.
//   8) the client atomically sets the state = kFreeChannel
//
//  In the shared memory the layout is as follows:
//
//    [ channel count    ]
//    [ channel control 0]
//    [ channel control 1]
//    [ channel control N]
//    [ channel buffer 0 ] 1024 bytes
//    [ channel buffer 1 ] 1024 bytes
//    [ channel buffer N ] 1024 bytes
//
// By default each channel buffer is 1024 bytes
namespace sandbox {

// the possible channel states as described above
enum ChannelState {
  // channel is free
  kFreeChannel = 1,
  // IPC in progress client side
  kBusyChannel,
  // IPC in progress server side
  kAckChannel,
  // not used right now
  kReadyChannel,
  // IPC abandoned by client side
  kAbandonnedChannel
};

// The next two constants control the time outs for the IPC.
const DWORD kIPCWaitTimeOut1 = 1000;   // Milliseconds.
const DWORD kIPCWaitTimeOut2 =   50;   // Milliseconds.

// the channel control structure
struct ChannelControl {
  // points to be beginning of the channel buffer, where data goes
  size_t channel_base;
  // maintains the state from the ChannelState enumeration
  volatile LONG state;
  // the ping event is signaled by the client when the IPC data is ready on
  // the buffer
  HANDLE ping_event;
  // the client waits on the pong event for the IPC answer back
  HANDLE pong_event;
  // the IPC unique identifier
  uint32 ipc_tag;
};

struct IPCControl {
  // total number of channels available, some might be busy at a given time
  size_t channels_count;
  // handle to a shared mutex to detect when the server is dead
  HANDLE server_alive;
  // array of channel control structures
  ChannelControl channels[1];
};

// the actual shared memory IPC implementation class. This object is designed
// to be lightweight so it can be constructed on-site (at the calling place)
// wherever an IPC call is needed.
class SharedMemIPCClient {
 public:
  // Creates the IPC client.
  // as parameter it takes the base address of the shared memory
  explicit SharedMemIPCClient(void* shared_mem);

  // locks a free channel and returns the channel buffer memory base. This call
  // blocks until there is a free channel
  void* GetBuffer();

  // releases the lock on the channel, for other to use. call this if you have
  // called GetBuffer and you want to abort but have not called yet DoCall()
  void FreeBuffer(void* buffer);

  // Performs the actual IPC call.
  // params: The blob of packed input parameters.
  // answer: upon IPC completion, it contains the server answer to the IPC.
  // If the return value is not SBOX_ERROR_CHANNEL_ERROR, the caller has to free
  // the channel.
  // returns ALL_OK if the IPC mechanism successfully delivered. You still need
  // to check on the answer structure to see the actual IPC result.
  ResultCode DoCall(CrossCallParams* params, CrossCallReturn* answer);

 private:
  // Returns the index of the first free channel. It sets 'severe_failure'
  // to true if there is an unrecoverable error that does not allow to
  // find a channel.
  size_t LockFreeChannel(bool* severe_failure);
  // Return the channel index given the address of the buffer.
  size_t ChannelIndexFromBuffer(const void* buffer);
  IPCControl* control_;
  // point to the first channel base
  char* first_base_;
};

}  // namespace sandbox

#endif  // SANDBOX_SRC_SHAREDMEM_IPC_CLIENT_H__