summaryrefslogtreecommitdiffstats
path: root/sandbox/src/sidestep_resolver.cc
blob: 40278651d61021a92dd31c7ae2525c3401bbc144 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "sandbox/src/sidestep_resolver.h"

#include "sandbox/src/pe_image.h"
#include "sandbox/src/sandbox_nt_util.h"
#include "sandbox/src/sidestep/preamble_patcher.h"

namespace {

const size_t kSizeOfSidestepStub = sidestep::kMaxPreambleStubSize;

struct SidestepThunk {
  char sidestep[kSizeOfSidestepStub];  // Storage for the sidestep stub.
  int internal_thunk;  // Dummy member to the beginning of the internal thunk.
};

struct SmartThunk {
  const void* module_base;  // Target module's base.
  const void* interceptor;  // Real interceptor.
  SidestepThunk sidestep;  // Standard sidestep thunk.
};

}  // namespace

namespace sandbox {

NTSTATUS SidestepResolverThunk::Setup(const void* target_module,
                                      const void* interceptor_module,
                                      const char* target_name,
                                      const char* interceptor_name,
                                      const void* interceptor_entry_point,
                                      void* thunk_storage,
                                      size_t storage_bytes,
                                      size_t* storage_used) {
  NTSTATUS ret = Init(target_module, interceptor_module, target_name,
                      interceptor_name, interceptor_entry_point,
                      thunk_storage, storage_bytes);
  if (!NT_SUCCESS(ret))
    return ret;

  SidestepThunk* thunk = reinterpret_cast<SidestepThunk*>(thunk_storage);

  size_t internal_bytes = storage_bytes - kSizeOfSidestepStub;
  if (!SetInternalThunk(&thunk->internal_thunk, internal_bytes, thunk_storage,
                        interceptor_))
    return STATUS_BUFFER_TOO_SMALL;

  AutoProtectMemory memory;
  memory.ChangeProtection(target_, kSizeOfSidestepStub, PAGE_READWRITE);

  sidestep::SideStepError rv = sidestep::PreamblePatcher::Patch(
      target_, reinterpret_cast<void*>(&thunk->internal_thunk), thunk_storage,
      kSizeOfSidestepStub);

  if (sidestep::SIDESTEP_INSUFFICIENT_BUFFER == rv)
    return STATUS_BUFFER_TOO_SMALL;

  if (sidestep::SIDESTEP_SUCCESS != rv)
    return STATUS_UNSUCCESSFUL;

  if (storage_used)
    *storage_used = GetThunkSize();

  return ret;
}

size_t SidestepResolverThunk::GetThunkSize() const {
  return GetInternalThunkSize() + kSizeOfSidestepStub;
}

// This is basically a wrapper around the normal sidestep patch that extends
// the thunk to use a chained interceptor. It uses the fact that
// SetInternalThunk generates the code to pass as the first parameter whatever
// it receives as original_function; we let SidestepResolverThunk set this value
// to it's saved code, and then we change it to our thunk data.
NTSTATUS SmartSidestepResolverThunk::Setup(const void* target_module,
                                           const void* interceptor_module,
                                           const char* target_name,
                                           const char* interceptor_name,
                                           const void* interceptor_entry_point,
                                           void* thunk_storage,
                                           size_t storage_bytes,
                                           size_t* storage_used) {
  if (storage_bytes < GetThunkSize())
    return STATUS_BUFFER_TOO_SMALL;

  SmartThunk* thunk = reinterpret_cast<SmartThunk*>(thunk_storage);
  thunk->module_base = target_module;

  NTSTATUS ret;
  if (interceptor_entry_point) {
    thunk->interceptor = interceptor_entry_point;
  } else {
    ret = ResolveInterceptor(interceptor_module, interceptor_name,
                             &thunk->interceptor);
    if (!NT_SUCCESS(ret))
      return ret;
  }

  // Perform a standard sidestep patch on the last part of the thunk, but point
  // to our internal smart interceptor.
  size_t standard_bytes = storage_bytes - offsetof(SmartThunk, sidestep);
  ret = SidestepResolverThunk::Setup(target_module, interceptor_module,
                                     target_name, NULL, &SmartStub,
                                     &thunk->sidestep, standard_bytes, NULL);
  if (!NT_SUCCESS(ret))
    return ret;

  // Fix the internal thunk to pass the whole buffer to the interceptor.
  SetInternalThunk(&thunk->sidestep.internal_thunk, GetInternalThunkSize(),
                   thunk_storage, &SmartStub);

  if (storage_used)
    *storage_used = GetThunkSize();

  return ret;
}

size_t SmartSidestepResolverThunk::GetThunkSize() const {
  return GetInternalThunkSize() + kSizeOfSidestepStub +
         offsetof(SmartThunk, sidestep);
}

// This code must basically either call the intended interceptor or skip the
// call and invoke instead the original function. In any case, we are saving
// the registers that may be trashed by our c++ code.
//
// This function is called with a first parameter inserted by us, that points
// to our SmartThunk. When we call the interceptor we have to replace this
// parameter with the one expected by that function (stored inside our
// structure); on the other hand, when we skip the interceptor we have to remove
// that extra argument before calling the original function.
//
// When we skip the interceptor, the transformation of the stack looks like:
//  On Entry:                         On Use:                     On Exit:
//  [param 2] = first real argument   [param 2] (esp+1c)          [param 2]
//  [param 1] = our SmartThunk        [param 1] (esp+18)          [ret address]
//  [ret address] = real caller       [ret address] (esp+14)      [xxx]
//  [xxx]                             [addr to jump to] (esp+10)  [xxx]
//  [xxx]                             [saved eax]                 [xxx]
//  [xxx]                             [saved ebx]                 [xxx]
//  [xxx]                             [saved ecx]                 [xxx]
//  [xxx]                             [saved edx]                 [xxx]
__declspec(naked)
void SmartSidestepResolverThunk::SmartStub() {
  __asm {
    push eax                  // Space for the jump.
    push eax                  // Save registers.
    push ebx
    push ecx
    push edx
    mov ebx, [esp + 0x18]     // First parameter = SmartThunk.
    mov edx, [esp + 0x14]     // Get the return address.
    mov eax, [ebx]SmartThunk.module_base
    push edx
    push eax
    call SmartSidestepResolverThunk::IsInternalCall
    add esp, 8

    test eax, eax
    lea edx, [ebx]SmartThunk.sidestep   // The original function.
    jz call_interceptor

    // Skip this call
    mov ecx, [esp + 0x14]               // Return address.
    mov [esp + 0x18], ecx               // Remove first parameter.
    mov [esp + 0x10], edx
    pop edx                             // Restore registers.
    pop ecx
    pop ebx
    pop eax
    ret 4                               // Jump to original function.

  call_interceptor:
    mov ecx, [ebx]SmartThunk.interceptor
    mov [esp + 0x18], edx               // Replace first parameter.
    mov [esp + 0x10], ecx
    pop edx                             // Restore registers.
    pop ecx
    pop ebx
    pop eax
    ret                                 // Jump to original function.
  }
}

bool SmartSidestepResolverThunk::IsInternalCall(const void* base,
                                                void* return_address) {
  DCHECK_NT(base);
  DCHECK_NT(return_address);

  PEImage pe(base);
  if (pe.GetImageSectionFromAddr(return_address))
    return true;
  return false;
}

}  // namespace sandbox