1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/src/win_utils.h"
#include <map>
#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "sandbox/src/internal_types.h"
#include "sandbox/src/nt_internals.h"
namespace {
// Holds the information about a known registry key.
struct KnownReservedKey {
const wchar_t* name;
HKEY key;
};
// Contains all the known registry key by name and by handle.
const KnownReservedKey kKnownKey[] = {
{ L"HKEY_CLASSES_ROOT", HKEY_CLASSES_ROOT },
{ L"HKEY_CURRENT_USER", HKEY_CURRENT_USER },
{ L"HKEY_LOCAL_MACHINE", HKEY_LOCAL_MACHINE},
{ L"HKEY_USERS", HKEY_USERS},
{ L"HKEY_PERFORMANCE_DATA", HKEY_PERFORMANCE_DATA},
{ L"HKEY_PERFORMANCE_TEXT", HKEY_PERFORMANCE_TEXT},
{ L"HKEY_PERFORMANCE_NLSTEXT", HKEY_PERFORMANCE_NLSTEXT},
{ L"HKEY_CURRENT_CONFIG", HKEY_CURRENT_CONFIG},
{ L"HKEY_DYN_DATA", HKEY_DYN_DATA}
};
// Returns true if the provided path points to a pipe.
bool IsPipe(const std::wstring& path) {
size_t start = 0;
if (0 == path.compare(0, sandbox::kNTPrefixLen, sandbox::kNTPrefix))
start = sandbox::kNTPrefixLen;
const wchar_t kPipe[] = L"pipe\\";
return (0 == path.compare(start, arraysize(kPipe) - 1, kPipe));
}
} // namespace
namespace sandbox {
HKEY GetReservedKeyFromName(const std::wstring& name) {
for (size_t i = 0; i < arraysize(kKnownKey); ++i) {
if (name == kKnownKey[i].name)
return kKnownKey[i].key;
}
return NULL;
}
bool ResolveRegistryName(std::wstring name, std::wstring* resolved_name) {
for (size_t i = 0; i < arraysize(kKnownKey); ++i) {
if (name.find(kKnownKey[i].name) == 0) {
HKEY key;
DWORD disposition;
if (ERROR_SUCCESS != ::RegCreateKeyEx(kKnownKey[i].key, L"", 0, NULL, 0,
MAXIMUM_ALLOWED, NULL, &key,
&disposition))
return false;
bool result = GetPathFromHandle(key, resolved_name);
::RegCloseKey(key);
if (!result)
return false;
*resolved_name += name.substr(wcslen(kKnownKey[i].name));
return true;
}
}
return false;
}
DWORD IsReparsePoint(const std::wstring& full_path, bool* result) {
std::wstring path = full_path;
// Remove the nt prefix.
if (0 == path.compare(0, kNTPrefixLen, kNTPrefix))
path = path.substr(kNTPrefixLen);
// Check if it's a pipe. We can't query the attributes of a pipe.
if (IsPipe(path)) {
*result = FALSE;
return ERROR_SUCCESS;
}
std::wstring::size_type last_pos = std::wstring::npos;
do {
path = path.substr(0, last_pos);
DWORD attributes = ::GetFileAttributes(path.c_str());
if (INVALID_FILE_ATTRIBUTES == attributes) {
DWORD error = ::GetLastError();
if (error != ERROR_FILE_NOT_FOUND &&
error != ERROR_PATH_NOT_FOUND &&
error != ERROR_INVALID_NAME) {
// Unexpected error.
NOTREACHED();
return error;
}
} else if (FILE_ATTRIBUTE_REPARSE_POINT & attributes) {
// This is a reparse point.
*result = true;
return ERROR_SUCCESS;
}
last_pos = path.rfind(L'\\');
} while (last_pos != std::wstring::npos);
*result = false;
return ERROR_SUCCESS;
}
// We get a |full_path| of the form \??\c:\some\foo\bar, and the name that
// we'll get from |handle| will be \device\harddiskvolume1\some\foo\bar.
bool SameObject(HANDLE handle, const wchar_t* full_path) {
std::wstring path(full_path);
DCHECK(!path.empty());
// Check if it's a pipe.
if (IsPipe(path))
return true;
std::wstring actual_path;
if (!GetPathFromHandle(handle, &actual_path))
return false;
// This may end with a backslash.
const wchar_t kBackslash = '\\';
if (path[path.length() - 1] == kBackslash)
path = path.substr(0, path.length() - 1);
// Perfect match (case-insesitive check).
if (0 == _wcsicmp(actual_path.c_str(), path.c_str()))
return true;
// Look for the drive letter.
size_t colon_pos = path.find(L':');
if (colon_pos == 0 || colon_pos == std::wstring::npos)
return false;
// Only one character for the drive.
if (colon_pos > 1 && path[colon_pos - 2] != kBackslash)
return false;
// We only need 3 chars, but let's alloc a buffer for four.
wchar_t drive[4] = {0};
wchar_t vol_name[MAX_PATH];
memcpy(drive, &path[colon_pos - 1], 2 * sizeof(*drive));
// We'll get a double null terminated string.
DWORD vol_length = ::QueryDosDeviceW(drive, vol_name, MAX_PATH);
if (vol_length < 2 || vol_length == MAX_PATH)
return false;
// Ignore the nulls at the end.
vol_length = static_cast<DWORD>(wcslen(vol_name));
// The two paths should be the same length.
if (vol_length + path.size() - (colon_pos + 1) != actual_path.size())
return false;
// Check up to the drive letter.
if (0 != actual_path.compare(0, vol_length, vol_name))
return false;
// Check the path after the drive letter.
if (0 != actual_path.compare(vol_length, std::wstring::npos,
&path[colon_pos + 1]))
return false;
return true;
}
bool ConvertToLongPath(const std::wstring& short_path,
std::wstring* long_path) {
// Check if the path is a NT path.
bool is_nt_path = false;
std::wstring path = short_path;
if (0 == path.compare(0, kNTPrefixLen, kNTPrefix)) {
path = path.substr(kNTPrefixLen);
is_nt_path = true;
}
DWORD size = MAX_PATH;
scoped_array<wchar_t> long_path_buf(new wchar_t[size]);
DWORD return_value = ::GetLongPathName(path.c_str(), long_path_buf.get(),
size);
while (return_value >= size) {
size *= 2;
long_path_buf.reset(new wchar_t[size]);
return_value = ::GetLongPathName(path.c_str(), long_path_buf.get(), size);
}
DWORD last_error = ::GetLastError();
if (0 == return_value && (ERROR_FILE_NOT_FOUND == last_error ||
ERROR_PATH_NOT_FOUND == last_error ||
ERROR_INVALID_NAME == last_error)) {
// The file does not exist, but maybe a sub path needs to be expanded.
std::wstring::size_type last_slash = path.rfind(L'\\');
if (std::wstring::npos == last_slash)
return false;
std::wstring begin = path.substr(0, last_slash);
std::wstring end = path.substr(last_slash);
if (!ConvertToLongPath(begin, &begin))
return false;
// Ok, it worked. Let's reset the return value.
path = begin + end;
return_value = 1;
} else if (0 != return_value) {
path = long_path_buf.get();
}
if (return_value != 0) {
if (is_nt_path) {
*long_path = kNTPrefix;
*long_path += path;
} else {
*long_path = path;
}
return true;
}
return false;
}
bool GetPathFromHandle(HANDLE handle, std::wstring* path) {
NtQueryObjectFunction NtQueryObject = NULL;
ResolveNTFunctionPtr("NtQueryObject", &NtQueryObject);
OBJECT_NAME_INFORMATION initial_buffer;
OBJECT_NAME_INFORMATION* name = &initial_buffer;
ULONG size = sizeof(initial_buffer);
// Query the name information a first time to get the size of the name.
NTSTATUS status = NtQueryObject(handle, ObjectNameInformation, name, size,
&size);
scoped_ptr<OBJECT_NAME_INFORMATION> name_ptr;
if (size) {
name = reinterpret_cast<OBJECT_NAME_INFORMATION*>(new BYTE[size]);
name_ptr.reset(name);
// Query the name information a second time to get the name of the
// object referenced by the handle.
status = NtQueryObject(handle, ObjectNameInformation, name, size, &size);
}
if (STATUS_SUCCESS != status)
return false;
path->assign(name->ObjectName.Buffer, name->ObjectName.Length /
sizeof(name->ObjectName.Buffer[0]));
return true;
}
bool GetNtPathFromWin32Path(const std::wstring& path, std::wstring* nt_path) {
HANDLE file = ::CreateFileW(path.c_str(), 0,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL);
if (file == INVALID_HANDLE_VALUE)
return false;
bool rv = GetPathFromHandle(file, nt_path);
::CloseHandle(file);
return rv;
}
bool WriteProtectedChildMemory(HANDLE child_process, void* address,
const void* buffer, size_t length) {
// First, remove the protections.
DWORD old_protection;
if (!::VirtualProtectEx(child_process, address, length,
PAGE_WRITECOPY, &old_protection))
return false;
SIZE_T written;
bool ok = ::WriteProcessMemory(child_process, address, buffer, length,
&written) && (length == written);
// Always attempt to restore the original protection.
if (!::VirtualProtectEx(child_process, address, length,
old_protection, &old_protection))
return false;
return ok;
}
}; // namespace sandbox
// TODO(cpu): This is not the final code we want here but we are yet
// to understand what is going on. See bug 11789.
void ResolveNTFunctionPtr(const char* name, void* ptr) {
HMODULE ntdll = ::GetModuleHandle(sandbox::kNtdllName);
FARPROC* function_ptr = reinterpret_cast<FARPROC*>(ptr);
*function_ptr = ::GetProcAddress(ntdll, name);
if (*function_ptr)
return;
// We have data that re-trying helps.
*function_ptr = ::GetProcAddress(ntdll, name);
CHECK(*function_ptr);
}
|