1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
/* libs/graphics/animator/SkSVGPath.cpp
**
** Copyright 2006, Google Inc.
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <ctype.h>
#include "SkDrawPath.h"
#include "SkParse.h"
#include "SkPoint.h"
#include "SkUtils.h"
#define QUADRATIC_APPROXIMATION 1
#if QUADRATIC_APPROXIMATION
////////////////////////////////////////////////////////////////////////////////////
//functions to approximate a cubic using two quadratics
// midPt sets the first argument to be the midpoint of the other two
// it is used by quadApprox
static inline void midPt(SkPoint& dest,const SkPoint& a,const SkPoint& b)
{
dest.set(SkScalarAve(a.fX, b.fX),SkScalarAve(a.fY, b.fY));
}
// quadApprox - makes an approximation, which we hope is faster
static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2)
{
//divide the cubic up into two cubics, then convert them into quadratics
//define our points
SkPoint c,j,k,l,m,n,o,p,q, mid;
fPath.getLastPt(&c);
midPt(j, p0, c);
midPt(k, p0, p1);
midPt(l, p1, p2);
midPt(o, j, k);
midPt(p, k, l);
midPt(q, o, p);
//compute the first half
m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY));
n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY));
midPt(mid,m,n);
fPath.quadTo(mid,q);
c = q;
//compute the second half
m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY));
n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY));
midPt(mid,m,n);
fPath.quadTo(mid,p2);
}
#endif
static inline bool is_between(int c, int min, int max)
{
return (unsigned)(c - min) <= (unsigned)(max - min);
}
static inline bool is_ws(int c)
{
return is_between(c, 1, 32);
}
static inline bool is_digit(int c)
{
return is_between(c, '0', '9');
}
static inline bool is_sep(int c)
{
return is_ws(c) || c == ',';
}
static const char* skip_ws(const char str[])
{
SkASSERT(str);
while (is_ws(*str))
str++;
return str;
}
static const char* skip_sep(const char str[])
{
SkASSERT(str);
while (is_sep(*str))
str++;
return str;
}
static const char* find_points(const char str[], SkPoint value[], int count,
bool isRelative, SkPoint* relative)
{
str = SkParse::FindScalars(str, &value[0].fX, count * 2);
if (isRelative) {
for (int index = 0; index < count; index++) {
value[index].fX += relative->fX;
value[index].fY += relative->fY;
}
}
return str;
}
static const char* find_scalar(const char str[], SkScalar* value,
bool isRelative, SkScalar relative)
{
str = SkParse::FindScalar(str, value);
if (isRelative)
*value += relative;
return str;
}
void SkDrawPath::parseSVG() {
fPath.reset();
const char* data = d.c_str();
SkPoint f = {0, 0};
SkPoint c = {0, 0};
SkPoint lastc = {0, 0};
SkPoint points[3];
char op = '\0';
char previousOp = '\0';
bool relative = false;
do {
data = skip_ws(data);
if (data[0] == '\0')
break;
char ch = data[0];
if (is_digit(ch) || ch == '-' || ch == '+') {
if (op == '\0')
return;
}
else {
op = ch;
relative = false;
if (islower(op)) {
op = (char) toupper(op);
relative = true;
}
data++;
data = skip_sep(data);
}
switch (op) {
case 'M':
data = find_points(data, points, 1, relative, &c);
fPath.moveTo(points[0]);
op = 'L';
c = points[0];
break;
case 'L':
data = find_points(data, points, 1, relative, &c);
fPath.lineTo(points[0]);
c = points[0];
break;
case 'H': {
SkScalar x;
data = find_scalar(data, &x, relative, c.fX);
fPath.lineTo(x, c.fY);
c.fX = x;
}
break;
case 'V': {
SkScalar y;
data = find_scalar(data, &y, relative, c.fY);
fPath.lineTo(c.fX, y);
c.fY = y;
}
break;
case 'C':
data = find_points(data, points, 3, relative, &c);
goto cubicCommon;
case 'S':
data = find_points(data, &points[1], 2, relative, &c);
points[0] = c;
if (previousOp == 'C' || previousOp == 'S') {
points[0].fX -= lastc.fX - c.fX;
points[0].fY -= lastc.fY - c.fY;
}
cubicCommon:
// if (data[0] == '\0')
// return;
#if QUADRATIC_APPROXIMATION
quadApprox(fPath, points[0], points[1], points[2]);
#else //this way just does a boring, slow old cubic
fPath.cubicTo(points[0], points[1], points[2]);
#endif
//if we are using the quadApprox, lastc is what it would have been if we had used
//cubicTo
lastc = points[1];
c = points[2];
break;
case 'Q': // Quadratic Bezier Curve
data = find_points(data, points, 2, relative, &c);
goto quadraticCommon;
case 'T':
data = find_points(data, &points[1], 1, relative, &c);
points[0] = points[1];
if (previousOp == 'Q' || previousOp == 'T') {
points[0].fX = c.fX * 2 - lastc.fX;
points[0].fY = c.fY * 2 - lastc.fY;
}
quadraticCommon:
fPath.quadTo(points[0], points[1]);
lastc = points[0];
c = points[1];
break;
case 'Z':
fPath.close();
#if 0 // !!! still a bug?
if (fPath.isEmpty() && (f.fX != 0 || f.fY != 0)) {
c.fX -= SkScalar.Epsilon; // !!! enough?
fPath.moveTo(c);
fPath.lineTo(f);
fPath.close();
}
#endif
c = f;
op = '\0';
break;
case '~': {
SkPoint args[2];
data = find_points(data, args, 2, false, NULL);
fPath.moveTo(args[0].fX, args[0].fY);
fPath.lineTo(args[1].fX, args[1].fY);
}
break;
default:
SkASSERT(0);
return;
}
if (previousOp == 0)
f = c;
previousOp = op;
} while (data[0] > 0);
}
|