1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
|
/*
* Copyright (C) 2006-2008 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkMath.h"
#include "SkCordic.h"
#include "SkFloatingPoint.h"
#include "Sk64.h"
#include "SkScalar.h"
#ifdef SK_SCALAR_IS_FLOAT
const uint32_t gIEEENotANumber = 0x7FFFFFFF;
const uint32_t gIEEEInfinity = 0x7F800000;
#endif
#define sub_shift(zeros, x, n) \
zeros -= n; \
x >>= n
int SkCLZ_portable(uint32_t x) {
if (x == 0) {
return 32;
}
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
int zeros = 31;
if (x & 0xFFFF0000) {
sub_shift(zeros, x, 16);
}
if (x & 0xFF00) {
sub_shift(zeros, x, 8);
}
if (x & 0xF0) {
sub_shift(zeros, x, 4);
}
if (x & 0xC) {
sub_shift(zeros, x, 2);
}
if (x & 0x2) {
sub_shift(zeros, x, 1);
}
#else
int zeros = ((x >> 16) - 1) >> 31 << 4;
x <<= zeros;
int nonzero = ((x >> 24) - 1) >> 31 << 3;
zeros += nonzero;
x <<= nonzero;
nonzero = ((x >> 28) - 1) >> 31 << 2;
zeros += nonzero;
x <<= nonzero;
nonzero = ((x >> 30) - 1) >> 31 << 1;
zeros += nonzero;
x <<= nonzero;
zeros += (~x) >> 31;
#endif
return zeros;
}
int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
SkASSERT(denom);
Sk64 tmp;
tmp.setMul(numer1, numer2);
tmp.div(denom, Sk64::kTrunc_DivOption);
return tmp.get32();
}
int32_t SkMulShift(int32_t a, int32_t b, unsigned shift) {
int sign = SkExtractSign(a ^ b);
if (shift > 63) {
return sign;
}
a = SkAbs32(a);
b = SkAbs32(b);
uint32_t ah = a >> 16;
uint32_t al = a & 0xFFFF;
uint32_t bh = b >> 16;
uint32_t bl = b & 0xFFFF;
uint32_t A = ah * bh;
uint32_t B = ah * bl + al * bh;
uint32_t C = al * bl;
/* [ A ]
[ B ]
[ C ]
*/
uint32_t lo = C + (B << 16);
int32_t hi = A + (B >> 16) + (lo < C);
if (sign < 0) {
hi = -hi - Sk32ToBool(lo);
lo = 0 - lo;
}
if (shift == 0) {
#ifdef SK_DEBUGx
SkASSERT(((int32_t)lo >> 31) == hi);
#endif
return lo;
} else if (shift >= 32) {
return hi >> (shift - 32);
} else {
#ifdef SK_DEBUGx
int32_t tmp = hi >> shift;
SkASSERT(tmp == 0 || tmp == -1);
#endif
// we want (hi << (32 - shift)) | (lo >> shift) but rounded
int roundBit = (lo >> (shift - 1)) & 1;
return ((hi << (32 - shift)) | (lo >> shift)) + roundBit;
}
}
SkFixed SkFixedMul_portable(SkFixed a, SkFixed b) {
#if 0
Sk64 tmp;
tmp.setMul(a, b);
tmp.shiftRight(16);
return tmp.fLo;
#elif defined(SkLONGLONG)
return (SkLONGLONG)a * b >> 16;
#else
int sa = SkExtractSign(a);
int sb = SkExtractSign(b);
// now make them positive
a = SkApplySign(a, sa);
b = SkApplySign(b, sb);
uint32_t ah = a >> 16;
uint32_t al = a & 0xFFFF;
uint32_t bh = b >> 16;
uint32_t bl = b & 0xFFFF;
uint32_t R = ah * b + al * bh + (al * bl >> 16);
return SkApplySign(R, sa ^ sb);
#endif
}
SkFract SkFractMul_portable(SkFract a, SkFract b) {
#if 0
Sk64 tmp;
tmp.setMul(a, b);
return tmp.getFract();
#elif defined(SkLONGLONG)
return (SkLONGLONG)a * b >> 30;
#else
int sa = SkExtractSign(a);
int sb = SkExtractSign(b);
// now make them positive
a = SkApplySign(a, sa);
b = SkApplySign(b, sb);
uint32_t ah = a >> 16;
uint32_t al = a & 0xFFFF;
uint32_t bh = b >> 16;
uint32_t bl = b & 0xFFFF;
uint32_t A = ah * bh;
uint32_t B = ah * bl + al * bh;
uint32_t C = al * bl;
/* [ A ]
[ B ]
[ C ]
*/
uint32_t Lo = C + (B << 16);
uint32_t Hi = A + (B >>16) + (Lo < C);
SkASSERT((Hi >> 29) == 0); // else overflow
int32_t R = (Hi << 2) + (Lo >> 30);
return SkApplySign(R, sa ^ sb);
#endif
}
int SkFixedMulCommon(SkFixed a, int b, int bias) {
// this function only works if b is 16bits
SkASSERT(b == (int16_t)b);
SkASSERT(b >= 0);
int sa = SkExtractSign(a);
a = SkApplySign(a, sa);
uint32_t ah = a >> 16;
uint32_t al = a & 0xFFFF;
uint32_t R = ah * b + ((al * b + bias) >> 16);
return SkApplySign(R, sa);
}
#ifdef SK_DEBUGx
#define TEST_FASTINVERT
#endif
SkFixed SkFixedFastInvert(SkFixed x) {
/* Adapted (stolen) from Mathias' gglRecip()
*/
if (x == SK_Fixed1) {
return SK_Fixed1;
}
int sign = SkExtractSign(x);
uint32_t a = SkApplySign(x, sign);
if (a <= 2) {
return SkApplySign(SK_MaxS32, sign);
}
#ifdef TEST_FASTINVERT
SkFixed orig = a;
uint32_t slow = SkFixedDiv(SK_Fixed1, a);
#endif
// normalize a
int lz = SkCLZ(a);
a = a << lz >> 16;
// compute 1/a approximation (0.5 <= a < 1.0)
uint32_t r = 0x17400 - a; // (2.90625 (~2.914) - 2*a) >> 1
// Newton-Raphson iteration:
// x = r*(2 - a*r) = ((r/2)*(1 - a*r/2))*4
r = ( (0x10000 - ((a*r)>>16)) * r ) >> 15;
r = ( (0x10000 - ((a*r)>>16)) * r ) >> (30 - lz);
#ifdef TEST_FASTINVERT
SkDebugf("SkFixedFastInvert(%x %g) = %x %g Slow[%x %g]\n",
orig, orig/65536.,
r, r/65536.,
slow, slow/65536.);
#endif
return SkApplySign(r, sign);
}
///////////////////////////////////////////////////////////////////////////////
#define DIVBITS_ITER(n) \
case n: \
if ((numer = (numer << 1) - denom) >= 0) \
result |= 1 << (n - 1); else numer += denom
int32_t SkDivBits(int32_t numer, int32_t denom, int shift_bias) {
SkASSERT(denom != 0);
if (numer == 0) {
return 0;
}
// make numer and denom positive, and sign hold the resulting sign
int32_t sign = SkExtractSign(numer ^ denom);
numer = SkAbs32(numer);
denom = SkAbs32(denom);
int nbits = SkCLZ(numer) - 1;
int dbits = SkCLZ(denom) - 1;
int bits = shift_bias - nbits + dbits;
if (bits < 0) { // answer will underflow
return 0;
}
if (bits > 31) { // answer will overflow
return SkApplySign(SK_MaxS32, sign);
}
denom <<= dbits;
numer <<= nbits;
SkFixed result = 0;
// do the first one
if ((numer -= denom) >= 0) {
result = 1;
} else {
numer += denom;
}
// Now fall into our switch statement if there are more bits to compute
if (bits > 0) {
// make room for the rest of the answer bits
result <<= bits;
switch (bits) {
DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29);
DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26);
DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23);
DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20);
DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17);
DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14);
DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11);
DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8);
DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5);
DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2);
// we merge these last two together, makes GCC make better ARM
default:
DIVBITS_ITER( 1);
}
}
if (result < 0) {
result = SK_MaxS32;
}
return SkApplySign(result, sign);
}
/* mod(float numer, float denom) seems to always return the sign
of the numer, so that's what we do too
*/
SkFixed SkFixedMod(SkFixed numer, SkFixed denom) {
int sn = SkExtractSign(numer);
int sd = SkExtractSign(denom);
numer = SkApplySign(numer, sn);
denom = SkApplySign(denom, sd);
if (numer < denom) {
return SkApplySign(numer, sn);
} else if (numer == denom) {
return 0;
} else {
SkFixed div = SkFixedDiv(numer, denom);
return SkApplySign(SkFixedMul(denom, div & 0xFFFF), sn);
}
}
/* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf
*/
int32_t SkSqrtBits(int32_t x, int count) {
SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30);
uint32_t root = 0;
uint32_t remHi = 0;
uint32_t remLo = x;
do {
root <<= 1;
remHi = (remHi<<2) | (remLo>>30);
remLo <<= 2;
uint32_t testDiv = (root << 1) + 1;
if (remHi >= testDiv) {
remHi -= testDiv;
root++;
}
} while (--count >= 0);
return root;
}
int32_t SkCubeRootBits(int32_t value, int bits) {
SkASSERT(bits > 0);
int sign = SkExtractSign(value);
value = SkApplySign(value, sign);
uint32_t root = 0;
uint32_t curr = (uint32_t)value >> 30;
value <<= 2;
do {
root <<= 1;
uint32_t guess = root * root + root;
guess = (guess << 1) + guess; // guess *= 3
if (guess < curr) {
curr -= guess + 1;
root |= 1;
}
curr = (curr << 3) | ((uint32_t)value >> 29);
value <<= 3;
} while (--bits);
return SkApplySign(root, sign);
}
SkFixed SkFixedMean(SkFixed a, SkFixed b) {
Sk64 tmp;
tmp.setMul(a, b);
return tmp.getSqrt();
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_SCALAR_IS_FLOAT
float SkScalarSinCos(float radians, float* cosValue) {
float sinValue = sk_float_sin(radians);
if (cosValue) {
*cosValue = sk_float_cos(radians);
if (SkScalarNearlyZero(*cosValue)) {
*cosValue = 0;
}
}
if (SkScalarNearlyZero(sinValue)) {
sinValue = 0;
}
return sinValue;
}
#endif
#define INTERP_SINTABLE
#define BUILD_TABLE_AT_RUNTIMEx
#define kTableSize 256
#ifdef BUILD_TABLE_AT_RUNTIME
static uint16_t gSkSinTable[kTableSize];
static void build_sintable(uint16_t table[]) {
for (int i = 0; i < kTableSize; i++) {
double rad = i * 3.141592653589793 / (2*kTableSize);
double val = sin(rad);
int ival = (int)(val * SK_Fixed1);
table[i] = SkToU16(ival);
}
}
#else
#include "SkSinTable.h"
#endif
#define SK_Fract1024SizeOver2PI 0x28BE60 /* floatToFract(1024 / 2PI) */
#ifdef INTERP_SINTABLE
static SkFixed interp_table(const uint16_t table[], int index, int partial255) {
SkASSERT((unsigned)index < kTableSize);
SkASSERT((unsigned)partial255 <= 255);
SkFixed lower = table[index];
SkFixed upper = (index == kTableSize - 1) ? SK_Fixed1 : table[index + 1];
SkASSERT(lower < upper);
SkASSERT(lower >= 0);
SkASSERT(upper <= SK_Fixed1);
partial255 += (partial255 >> 7);
return lower + ((upper - lower) * partial255 >> 8);
}
#endif
SkFixed SkFixedSinCos(SkFixed radians, SkFixed* cosValuePtr) {
SkASSERT(SK_ARRAY_COUNT(gSkSinTable) == kTableSize);
#ifdef BUILD_TABLE_AT_RUNTIME
static bool gFirstTime = true;
if (gFirstTime) {
build_sintable(gSinTable);
gFirstTime = false;
}
#endif
// make radians positive
SkFixed sinValue, cosValue;
int32_t cosSign = 0;
int32_t sinSign = SkExtractSign(radians);
radians = SkApplySign(radians, sinSign);
// scale it to 0...1023 ...
#ifdef INTERP_SINTABLE
radians = SkMulDiv(radians, 2 * kTableSize * 256, SK_FixedPI);
int findex = radians & (kTableSize * 256 - 1);
int index = findex >> 8;
int partial = findex & 255;
sinValue = interp_table(gSkSinTable, index, partial);
findex = kTableSize * 256 - findex - 1;
index = findex >> 8;
partial = findex & 255;
cosValue = interp_table(gSkSinTable, index, partial);
int quad = ((unsigned)radians / (kTableSize * 256)) & 3;
#else
radians = SkMulDiv(radians, 2 * kTableSize, SK_FixedPI);
int index = radians & (kTableSize - 1);
if (index == 0) {
sinValue = 0;
cosValue = SK_Fixed1;
} else {
sinValue = gSkSinTable[index];
cosValue = gSkSinTable[kTableSize - index];
}
int quad = ((unsigned)radians / kTableSize) & 3;
#endif
if (quad & 1) {
SkTSwap<SkFixed>(sinValue, cosValue);
}
if (quad & 2) {
sinSign = ~sinSign;
}
if (((quad - 1) & 2) == 0) {
cosSign = ~cosSign;
}
// restore the sign for negative angles
sinValue = SkApplySign(sinValue, sinSign);
cosValue = SkApplySign(cosValue, cosSign);
#ifdef SK_DEBUG
if (1) {
SkFixed sin2 = SkFixedMul(sinValue, sinValue);
SkFixed cos2 = SkFixedMul(cosValue, cosValue);
int diff = cos2 + sin2 - SK_Fixed1;
SkASSERT(SkAbs32(diff) <= 7);
}
#endif
if (cosValuePtr) {
*cosValuePtr = cosValue;
}
return sinValue;
}
///////////////////////////////////////////////////////////////////////////////
SkFixed SkFixedTan(SkFixed radians) { return SkCordicTan(radians); }
SkFixed SkFixedASin(SkFixed x) { return SkCordicASin(x); }
SkFixed SkFixedACos(SkFixed x) { return SkCordicACos(x); }
SkFixed SkFixedATan2(SkFixed y, SkFixed x) { return SkCordicATan2(y, x); }
SkFixed SkFixedExp(SkFixed x) { return SkCordicExp(x); }
SkFixed SkFixedLog(SkFixed x) { return SkCordicLog(x); }
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
#include "SkRandom.h"
#ifdef SkLONGLONG
static int symmetric_fixmul(int a, int b) {
int sa = SkExtractSign(a);
int sb = SkExtractSign(b);
a = SkApplySign(a, sa);
b = SkApplySign(b, sb);
#if 1
int c = (int)(((SkLONGLONG)a * b) >> 16);
return SkApplySign(c, sa ^ sb);
#else
SkLONGLONG ab = (SkLONGLONG)a * b;
if (sa ^ sb) {
ab = -ab;
}
return ab >> 16;
#endif
}
#endif
#include "SkPoint.h"
#ifdef SK_SUPPORT_UNITTEST
static void check_length(const SkPoint& p, SkScalar targetLen) {
float x = SkScalarToFloat(p.fX);
float y = SkScalarToFloat(p.fY);
float len = sk_float_sqrt(x*x + y*y);
len /= SkScalarToFloat(targetLen);
SkASSERT(len > 0.999f && len < 1.001f);
}
#endif
static void test_muldiv255() {
for (int a = 0; a <= 255; a++) {
for (int b = 0; b <= 255; b++) {
int ab = a * b;
float s = ab / 255.0f;
int round = (int)floorf(s + 0.5f);
int trunc = (int)floorf(s);
int iround = SkMulDiv255Round(a, b);
int itrunc = SkMulDiv255Trunc(a, b);
SkASSERT(iround == round);
SkASSERT(itrunc == trunc);
SkASSERT(itrunc <= iround);
SkASSERT(iround <= a);
SkASSERT(iround <= b);
}
}
}
void SkMath::UnitTest() {
#ifdef SK_SUPPORT_UNITTEST
int i;
int32_t x;
SkRandom rand;
SkToS8(127); SkToS8(-128); SkToU8(255);
SkToS16(32767); SkToS16(-32768); SkToU16(65535);
SkToS32(2*1024*1024); SkToS32(-2*1024*1024); SkToU32(4*1024*1024);
SkCordic_UnitTest();
// these should assert
#if 0
SkToS8(128);
SkToS8(-129);
SkToU8(256);
SkToU8(-5);
SkToS16(32768);
SkToS16(-32769);
SkToU16(65536);
SkToU16(-5);
if (sizeof(size_t) > 4) {
SkToS32(4*1024*1024);
SkToS32(-4*1024*1024);
SkToU32(5*1024*1024);
SkToU32(-5);
}
#endif
test_muldiv255();
#ifdef SK_DEBUG
{
SkScalar x = SK_ScalarNaN;
SkASSERT(SkScalarIsNaN(x));
}
#endif
for (i = 1; i <= 10; i++) {
x = SkCubeRootBits(i*i*i, 11);
SkASSERT(x == i);
}
x = SkFixedSqrt(SK_Fixed1);
SkASSERT(x == SK_Fixed1);
x = SkFixedSqrt(SK_Fixed1/4);
SkASSERT(x == SK_Fixed1/2);
x = SkFixedSqrt(SK_Fixed1*4);
SkASSERT(x == SK_Fixed1*2);
x = SkFractSqrt(SK_Fract1);
SkASSERT(x == SK_Fract1);
x = SkFractSqrt(SK_Fract1/4);
SkASSERT(x == SK_Fract1/2);
x = SkFractSqrt(SK_Fract1/16);
SkASSERT(x == SK_Fract1/4);
for (i = 1; i < 100; i++) {
x = SkFixedSqrt(SK_Fixed1 * i * i);
SkASSERT(x == SK_Fixed1 * i);
}
for (i = 0; i < 1000; i++) {
int value = rand.nextS16();
int max = rand.nextU16();
int clamp = SkClampMax(value, max);
int clamp2 = value < 0 ? 0 : (value > max ? max : value);
SkASSERT(clamp == clamp2);
}
for (i = 0; i < 100000; i++) {
SkPoint p;
p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1);
check_length(p, SK_Scalar1);
p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1);
check_length(p, SK_Scalar1);
}
{
SkFixed result = SkFixedDiv(100, 100);
SkASSERT(result == SK_Fixed1);
result = SkFixedDiv(1, SK_Fixed1);
SkASSERT(result == 1);
}
#ifdef SkLONGLONG
for (i = 0; i < 100000; i++) {
SkFixed numer = rand.nextS();
SkFixed denom = rand.nextS();
SkFixed result = SkFixedDiv(numer, denom);
SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom;
(void)SkCLZ(numer);
(void)SkCLZ(denom);
SkASSERT(result != (SkFixed)SK_NaN32);
if (check > SK_MaxS32) {
check = SK_MaxS32;
} else if (check < -SK_MaxS32) {
check = SK_MinS32;
}
SkASSERT(result == (int32_t)check);
result = SkFractDiv(numer, denom);
check = ((SkLONGLONG)numer << 30) / denom;
SkASSERT(result != (SkFixed)SK_NaN32);
if (check > SK_MaxS32) {
check = SK_MaxS32;
} else if (check < -SK_MaxS32) {
check = SK_MinS32;
}
SkASSERT(result == (int32_t)check);
// make them <= 2^24, so we don't overflow in fixmul
numer = numer << 8 >> 8;
denom = denom << 8 >> 8;
result = SkFixedMul(numer, denom);
SkFixed r2 = symmetric_fixmul(numer, denom);
// SkASSERT(result == r2);
result = SkFixedMul(numer, numer);
r2 = SkFixedSquare(numer);
SkASSERT(result == r2);
#ifdef SK_CAN_USE_FLOAT
if (numer >= 0 && denom >= 0) {
SkFixed mean = SkFixedMean(numer, denom);
float fm = sk_float_sqrt(sk_float_abs(SkFixedToFloat(numer) * SkFixedToFloat(denom)));
SkFixed mean2 = SkFloatToFixed(fm);
int diff = SkAbs32(mean - mean2);
SkASSERT(diff <= 1);
}
{
SkFixed mod = SkFixedMod(numer, denom);
float n = SkFixedToFloat(numer);
float d = SkFixedToFloat(denom);
float m = sk_float_mod(n, d);
#if 0
SkDebugf("%g mod %g = %g [%g]\n",
SkFixedToFloat(numer), SkFixedToFloat(denom),
SkFixedToFloat(mod), m);
#endif
SkASSERT(mod == 0 || (mod < 0) == (m < 0)); // ensure the same sign
int diff = SkAbs32(mod - SkFloatToFixed(m));
SkASSERT((diff >> 7) == 0);
}
#endif
}
#endif
#ifdef SK_CAN_USE_FLOAT
for (i = 0; i < 100000; i++) {
SkFract x = rand.nextU() >> 1;
double xx = (double)x / SK_Fract1;
SkFract xr = SkFractSqrt(x);
SkFract check = SkFloatToFract(sqrt(xx));
SkASSERT(xr == check || xr == check-1 || xr == check+1);
xr = SkFixedSqrt(x);
xx = (double)x / SK_Fixed1;
check = SkFloatToFixed(sqrt(xx));
SkASSERT(xr == check || xr == check-1);
xr = SkSqrt32(x);
xx = (double)x;
check = (int32_t)sqrt(xx);
SkASSERT(xr == check || xr == check-1);
}
#endif
#if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT)
{
SkFixed s, c;
s = SkFixedSinCos(0, &c);
SkASSERT(s == 0);
SkASSERT(c == SK_Fixed1);
}
int maxDiff = 0;
for (i = 0; i < 10000; i++) {
SkFixed rads = rand.nextS() >> 10;
double frads = SkFixedToFloat(rads);
SkFixed s, c;
s = SkScalarSinCos(rads, &c);
double fs = sin(frads);
double fc = cos(frads);
SkFixed is = SkFloatToFixed(fs);
SkFixed ic = SkFloatToFixed(fc);
maxDiff = SkMax32(maxDiff, SkAbs32(is - s));
maxDiff = SkMax32(maxDiff, SkAbs32(ic - c));
}
SkDebugf("SinCos: maximum error = %d\n", maxDiff);
#endif
#endif
}
#endif
|