summaryrefslogtreecommitdiffstats
path: root/skia/corecg/SkPoint.cpp
blob: 9d6acdfb6e8f3f86884e44d2121d60031fcc85b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
 * Copyright (C) 2006-2008 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "SkPoint.h"

void SkIPoint::rotateCW(SkIPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    int32_t tmp = fX;
    dst->fX = -fY;
    dst->fY = tmp;
}

void SkIPoint::rotateCCW(SkIPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    int32_t tmp = fX;
    dst->fX = fY;
    dst->fY = -tmp;
}

///////////////////////////////////////////////////////////////////////////////

void SkPoint::rotateCW(SkPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    SkScalar tmp = fX;
    dst->fX = -fY;
    dst->fY = tmp;
}

void SkPoint::rotateCCW(SkPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    SkScalar tmp = fX;
    dst->fX = fY;
    dst->fY = -tmp;
}

void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
    SkASSERT(dst);
    dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
}

#define kNearlyZero     (SK_Scalar1 / 8092)

bool SkPoint::normalize() {
    return this->setLength(fX, fY, SK_Scalar1);
}

bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
    return this->setLength(x, y, SK_Scalar1);
}

bool SkPoint::setLength(SkScalar length) {
    return this->setLength(fX, fY, length);
}

#ifdef SK_SCALAR_IS_FLOAT

SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    return sk_float_sqrt(dx * dx + dy * dy);
}

bool SkPoint::setLength(float x, float y, float length) {
    float mag = sk_float_sqrt(x * x + y * y);
    if (mag > kNearlyZero) {
        length /= mag;
        fX = x * length;
        fY = y * length;
        return true;
    }
    return false;
}

#else

#include "Sk64.h"

SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    Sk64    tmp1, tmp2;

    tmp1.setMul(dx, dx);
    tmp2.setMul(dy, dy);
    tmp1.add(tmp2);

    return tmp1.getSqrt();
}

#ifdef SK_DEBUGx
static SkFixed fixlen(SkFixed x, SkFixed y) {
    float fx = (float)x;
    float fy = (float)y;

    return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f);
}
#endif

static inline uint32_t squarefixed(unsigned x) {
    x >>= 16;
    return x*x;
}

#if 1   // Newton iter for setLength

static inline unsigned invsqrt_iter(unsigned V, unsigned U) {
    unsigned x = V * U >> 14;
    x = x * U >> 14;
    x = (3 << 14) - x;
    x = (U >> 1) * x >> 14;
    return x;
}

static const uint16_t gInvSqrt14GuessTable[] = {
    0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061,
    0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780,
    0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235,
    0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99,
    0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee,
    0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc,
    0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830,
    0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce
};

#define BUILD_INVSQRT_TABLEx
#ifdef BUILD_INVSQRT_TABLE
static void build_invsqrt14_guess_table() {
    for (int i = 8; i <= 63; i++) {
        unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25));
        printf("0x%x, ", x);
    }
    printf("\n");
}
#endif

static unsigned fast_invsqrt(uint32_t x) {
#ifdef BUILD_INVSQRT_TABLE
    unsigned top2 = x >> 25;
    SkASSERT(top2 >= 8 && top2 <= 63);

    static bool gOnce;
    if (!gOnce) {
        build_invsqrt14_guess_table();
        gOnce = true;
    }
#endif

    unsigned V = x >> 14;   // make V .14

    unsigned top = x >> 25;
    SkASSERT(top >= 8 && top <= 63);
    SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable));
    unsigned U = gInvSqrt14GuessTable[top - 8];
    
    U = invsqrt_iter(V, U);
    return invsqrt_iter(V, U);
}

/*  We "normalize" x,y to be .14 values (so we can square them and stay 32bits.
    Then we Newton-iterate this in .14 space to compute the invser-sqrt, and
    scale by it at the end. The .14 space means we can execute our iterations
    and stay in 32bits as well, making the multiplies much cheaper than calling
    SkFixedMul.
*/
bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
    if (ox == 0) {
        if (oy == 0) {
            return false;
        }
        this->set(0, SkApplySign(length, SkExtractSign(oy)));
        return true;
    }
    if (oy == 0) {
        this->set(SkApplySign(length, SkExtractSign(ox)), 0);
        return true;
    }

    unsigned x = SkAbs32(ox);
    unsigned y = SkAbs32(oy);
    int zeros = SkCLZ(x | y);

    // make x,y 1.14 values so our fast sqr won't overflow
    if (zeros > 17) {
        x <<= zeros - 17;
        y <<= zeros - 17; 
    } else {
        x >>= 17 - zeros;
        y >>= 17 - zeros;
    }
    SkASSERT((x | y) <= 0x7FFF);

    unsigned invrt = fast_invsqrt(x*x + y*y);

    x = x * invrt >> 12;
    y = y * invrt >> 12;

    if (length != SK_Fixed1) {
        x = SkFixedMul(x, length);
        y = SkFixedMul(y, length);
    }
    this->set(SkApplySign(x, SkExtractSign(ox)),
              SkApplySign(y, SkExtractSign(oy)));
    return true;
}
#else
/*
    Normalize x,y, and then scale them by length.

    The obvious way to do this would be the following:
        S64 tmp1, tmp2;
        tmp1.setMul(x,x);
        tmp2.setMul(y,y);
        tmp1.add(tmp2);
        len = tmp1.getSqrt();
        x' = SkFixedDiv(x, len);
        y' = SkFixedDiv(y, len);
    This is fine, but slower than what we do below.

    The present technique does not compute the starting length, but
    rather fiddles with x,y iteratively, all the while checking its
    magnitude^2 (avoiding a sqrt).

    We normalize by first shifting x,y so that at least one of them
    has bit 31 set (after taking the abs of them).
    Then we loop, refining x,y by squaring them and comparing
    against a very large 1.0 (1 << 28), and then adding or subtracting
    a delta (which itself is reduced by half each time through the loop).
    For speed we want the squaring to be with a simple integer mul. To keep
    that from overflowing we shift our coordinates down until we are dealing
    with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits)
    When our square is close to 1.0, we shift x,y down into fixed range.
*/
bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
    if (ox == 0) {
        if (oy == 0)
            return false;
        this->set(0, SkApplySign(length, SkExtractSign(oy)));
        return true;
    }
    if (oy == 0) {
        this->set(SkApplySign(length, SkExtractSign(ox)), 0);
        return true;
    }

    SkFixed x = SkAbs32(ox);
    SkFixed y = SkAbs32(oy);

    // shift x,y so that the greater of them is 15bits (1.14 fixed point)
    {
        int shift = SkCLZ(x | y);
        // make them .30
        x <<= shift - 1;
        y <<= shift - 1;
    }

    SkFixed dx = x;
    SkFixed dy = y;

    for (int i = 0; i < 17; i++) {
        dx >>= 1;
        dy >>= 1;

        U32 len2 = squarefixed(x) + squarefixed(y);
        if (len2 >> 28) {
            x -= dx;
            y -= dy;
        } else {
            x += dx;
            y += dy;
        }
    }
    x >>= 14;
    y >>= 14;

#ifdef SK_DEBUGx    // measure how far we are from unit-length
    {
        static int gMaxError;
        static int gMaxDiff;

        SkFixed len = fixlen(x, y);
        int err = len - SK_Fixed1;
        err = SkAbs32(err);

        if (err > gMaxError) {
            gMaxError = err;
            SkDebugf("gMaxError %d\n", err);
        }

        float fx = SkAbs32(ox)/65536.0f;
        float fy = SkAbs32(oy)/65536.0f;
        float mag = sqrtf(fx*fx + fy*fy);
        fx /= mag;
        fy /= mag;
        SkFixed xx = (int)floorf(fx * 65536 + 0.5f);
        SkFixed yy = (int)floorf(fy * 65536 + 0.5f);
        err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y));
        if (err > gMaxDiff) {
            gMaxDiff = err;
            SkDebugf("gMaxDiff %d\n", err);
        }
    }
#endif

    x = SkApplySign(x, SkExtractSign(ox));
    y = SkApplySign(y, SkExtractSign(oy));
    if (length != SK_Fixed1) {
        x = SkFixedMul(x, length);
        y = SkFixedMul(y, length);
    }
    
    this->set(x, y);
    return true;
}
#endif

#endif