summaryrefslogtreecommitdiffstats
path: root/skia/ext/convolver.cc
blob: f5a429aa39a91cd18d12d5323281b5cf9c7eaed6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>

#include "base/basictypes.h"
#include "base/logging.h"
#include "skia/ext/convolver.h"

namespace gfx {

namespace {

// Converts the argument to an 8-bit unsigned value by clamping to the range
// 0-255.
inline uint8 ClampTo8(int32 a) {
  if (static_cast<uint32>(a) < 256)
    return a;  // Avoid the extra check in the common case.
  if (a < 0)
    return 0;
  return 255;
}

// Stores a list of rows in a circular buffer. The usage is you write into it
// by calling AdvanceRow. It will keep track of which row in the buffer it
// should use next, and the total number of rows added.
class CircularRowBuffer {
 public:
  // The number of pixels in each row is given in |source_row_pixel_width|.
  // The maximum number of rows needed in the buffer is |max_y_filter_size|
  // (we only need to store enough rows for the biggest filter).
  //
  // We use the |first_input_row| to compute the coordinates of all of the
  // following rows returned by Advance().
  CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
                    int first_input_row)
      : row_byte_width_(dest_row_pixel_width * 4),
        num_rows_(max_y_filter_size),
        next_row_(0),
        next_row_coordinate_(first_input_row) {
    buffer_.resize(row_byte_width_ * max_y_filter_size);
    row_addresses_.resize(num_rows_);
  }

  // Moves to the next row in the buffer, returning a pointer to the beginning
  // of it.
  uint8* AdvanceRow() {
    uint8* row = &buffer_[next_row_ * row_byte_width_];
    next_row_coordinate_++;

    // Set the pointer to the next row to use, wrapping around if necessary.
    next_row_++;
    if (next_row_ == num_rows_)
      next_row_ = 0;
    return row;
  }

  // Returns a pointer to an "unrolled" array of rows. These rows will start
  // at the y coordinate placed into |*first_row_index| and will continue in
  // order for the maximum number of rows in this circular buffer.
  //
  // The |first_row_index_| may be negative. This means the circular buffer
  // starts before the top of the image (it hasn't been filled yet).
  uint8* const* GetRowAddresses(int* first_row_index) {
    // Example for a 4-element circular buffer holding coords 6-9.
    //   Row 0   Coord 8
    //   Row 1   Coord 9
    //   Row 2   Coord 6  <- next_row_ = 2, next_row_coordinate_ = 10.
    //   Row 3   Coord 7
    //
    // The "next" row is also the first (lowest) coordinate. This computation
    // may yield a negative value, but that's OK, the math will work out
    // since the user of this buffer will compute the offset relative
    // to the first_row_index and the negative rows will never be used.
    *first_row_index = next_row_coordinate_ - num_rows_;

    int cur_row = next_row_;
    for (int i = 0; i < num_rows_; i++) {
      row_addresses_[i] = &buffer_[cur_row * row_byte_width_];

      // Advance to the next row, wrapping if necessary.
      cur_row++;
      if (cur_row == num_rows_)
        cur_row = 0;
    }
    return &row_addresses_[0];
  }

 private:
  // The buffer storing the rows. They are packed, each one row_byte_width_.
  std::vector<uint8> buffer_;

  // Number of bytes per row in the |buffer_|.
  int row_byte_width_;

  // The number of rows available in the buffer.
  int num_rows_;

  // The next row index we should write into. This wraps around as the
  // circular buffer is used.
  int next_row_;

  // The y coordinate of the |next_row_|. This is incremented each time a
  // new row is appended and does not wrap.
  int next_row_coordinate_;

  // Buffer used by GetRowAddresses().
  std::vector<uint8*> row_addresses_;
};

// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the num_values() of the filter.
template<bool has_alpha>
void ConvolveHorizontally(const uint8* src_data,
                          const ConvolusionFilter1D& filter,
                          unsigned char* out_row) {
  // Loop over each pixel on this row in the output image.
  int num_values = filter.num_values();
  for (int out_x = 0; out_x < num_values; out_x++) {
    // Get the filter that determines the current output pixel.
    int filter_offset, filter_length;
    const int16* filter_values =
        filter.FilterForValue(out_x, &filter_offset, &filter_length);

    // Compute the first pixel in this row that the filter affects. It will
    // touch |filter_length| pixels (4 bytes each) after this.
    const uint8* row_to_filter = &src_data[filter_offset * 4];

    // Apply the filter to the row to get the destination pixel in |accum|.
    int32 accum[4] = {0};
    for (int filter_x = 0; filter_x < filter_length; filter_x++) {
      int16 cur_filter = filter_values[filter_x];
      accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
      accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
      accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
      if (has_alpha)
        accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
    }

    // Bring this value back in range. All of the filter scaling factors
    // are in fixed point with kShiftBits bits of fractional part.
    accum[0] >>= ConvolusionFilter1D::kShiftBits;
    accum[1] >>= ConvolusionFilter1D::kShiftBits;
    accum[2] >>= ConvolusionFilter1D::kShiftBits;
    if (has_alpha)
      accum[3] >>= ConvolusionFilter1D::kShiftBits;

    // Store the new pixel.
    out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
    out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
    out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
    if (has_alpha)
      out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
  }
}

// Does vertical convolusion to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |source_data_rows| array, with each row
// being |pixel_width| wide.
//
// The output must have room for |pixel_width * 4| bytes.
template<bool has_alpha>
void ConvolveVertically(const int16* filter_values,
                        int filter_length,
                        uint8* const* source_data_rows,
                        int pixel_width,
                        uint8* out_row) {
  // We go through each column in the output and do a vertical convolusion,
  // generating one output pixel each time.
  for (int out_x = 0; out_x < pixel_width; out_x++) {
    // Compute the number of bytes over in each row that the current column
    // we're convolving starts at. The pixel will cover the next 4 bytes.
    int byte_offset = out_x * 4;

    // Apply the filter to one column of pixels.
    int32 accum[4] = {0};
    for (int filter_y = 0; filter_y < filter_length; filter_y++) {
      int16 cur_filter = filter_values[filter_y];
      accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
      accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
      accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
      if (has_alpha)
        accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
    }

    // Bring this value back in range. All of the filter scaling factors
    // are in fixed point with kShiftBits bits of precision.
    accum[0] >>= ConvolusionFilter1D::kShiftBits;
    accum[1] >>= ConvolusionFilter1D::kShiftBits;
    accum[2] >>= ConvolusionFilter1D::kShiftBits;
    if (has_alpha)
      accum[3] >>= ConvolusionFilter1D::kShiftBits;

    // Store the new pixel.
    out_row[byte_offset + 0] = ClampTo8(accum[0]);
    out_row[byte_offset + 1] = ClampTo8(accum[1]);
    out_row[byte_offset + 2] = ClampTo8(accum[2]);
    if (has_alpha) {
      uint8 alpha = ClampTo8(accum[3]);

      // Make sure the alpha channel doesn't come out larger than any of the
      // color channels. We use premultipled alpha channels, so this should
      // never happen, but rounding errors will cause this from time to time.
      // These "impossible" colors will cause overflows (and hence random pixel
      // values) when the resulting bitmap is drawn to the screen.
      //
      // We only need to do this when generating the final output row (here).
      int max_color_channel = std::max(out_row[byte_offset + 0],
          std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
      if (alpha < max_color_channel)
        out_row[byte_offset + 3] = max_color_channel;
      else
        out_row[byte_offset + 3] = alpha;
    } else {
      // No alpha channel, the image is opaque.
      out_row[byte_offset + 3] = 0xff;
    }
  }
}

}  // namespace

// ConvolusionFilter1D ---------------------------------------------------------

void ConvolusionFilter1D::AddFilter(int filter_offset,
                                    const float* filter_values,
                                    int filter_length) {
  FilterInstance instance;
  instance.data_location = static_cast<int>(filter_values_.size());
  instance.offset = filter_offset;
  instance.length = filter_length;
  filters_.push_back(instance);

  DCHECK(filter_length > 0);
  for (int i = 0; i < filter_length; i++)
    filter_values_.push_back(FloatToFixed(filter_values[i]));

  max_filter_ = std::max(max_filter_, filter_length);
}

void ConvolusionFilter1D::AddFilter(int filter_offset,
                                    const int16* filter_values,
                                    int filter_length) {
  FilterInstance instance;
  instance.data_location = static_cast<int>(filter_values_.size());
  instance.offset = filter_offset;
  instance.length = filter_length;
  filters_.push_back(instance);

  DCHECK(filter_length > 0);
  for (int i = 0; i < filter_length; i++)
    filter_values_.push_back(filter_values[i]);

  max_filter_ = std::max(max_filter_, filter_length);
}

// BGRAConvolve2D -------------------------------------------------------------

void BGRAConvolve2D(const uint8* source_data,
                    int source_byte_row_stride,
                    bool source_has_alpha,
                    const ConvolusionFilter1D& filter_x,
                    const ConvolusionFilter1D& filter_y,
                    uint8* output) {
  int max_y_filter_size = filter_y.max_filter();

  // The next row in the input that we will generate a horizontally
  // convolved row for. If the filter doesn't start at the beginning of the
  // image (this is the case when we are only resizing a subset), then we
  // don't want to generate any output rows before that. Compute the starting
  // row for convolusion as the first pixel for the first vertical filter.
  int filter_offset, filter_length;
  const int16* filter_values =
      filter_y.FilterForValue(0, &filter_offset, &filter_length);
  int next_x_row = filter_offset;

  // We loop over each row in the input doing a horizontal convolusion. This
  // will result in a horizontally convolved image. We write the results into
  // a circular buffer of convolved rows and do vertical convolusion as rows
  // are available. This prevents us from having to store the entire
  // intermediate image and helps cache coherency.
  CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size,
                               filter_offset);

  // Loop over every possible output row, processing just enough horizontal
  // convolusions to run each subsequent vertical convolusion.
  int output_row_byte_width = filter_x.num_values() * 4;
  int num_output_rows = filter_y.num_values();
  for (int out_y = 0; out_y < num_output_rows; out_y++) {
    filter_values = filter_y.FilterForValue(out_y,
                                            &filter_offset, &filter_length);

    // Generate output rows until we have enough to run the current filter.
    while (next_x_row < filter_offset + filter_length) {
      if (source_has_alpha) {
        ConvolveHorizontally<true>(
            &source_data[next_x_row * source_byte_row_stride],
            filter_x, row_buffer.AdvanceRow());
      } else {
        ConvolveHorizontally<false>(
            &source_data[next_x_row * source_byte_row_stride],
            filter_x, row_buffer.AdvanceRow());
      }
      next_x_row++;
    }

    // Compute where in the output image this row of final data will go.
    uint8* cur_output_row = &output[out_y * output_row_byte_width];

    // Get the list of rows that the circular buffer has, in order.
    int first_row_in_circular_buffer;
    uint8* const* rows_to_convolve =
        row_buffer.GetRowAddresses(&first_row_in_circular_buffer);

    // Now compute the start of the subset of those rows that the filter
    // needs.
    uint8* const* first_row_for_filter =
        &rows_to_convolve[filter_offset - first_row_in_circular_buffer];

    if (source_has_alpha) {
      ConvolveVertically<true>(filter_values, filter_length,
                               first_row_for_filter,
                               filter_x.num_values(), cur_output_row);
    } else {
      ConvolveVertically<false>(filter_values, filter_length,
                                first_row_for_filter,
                                filter_x.num_values(), cur_output_row);
    }
  }
}

}  // namespace gfx