summaryrefslogtreecommitdiffstats
path: root/skia/ext/convolver.h
blob: dd99a7272f9aa9cbe7eaa2f7a8d3019cd84d7d46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef SKIA_EXT_CONVOLVER_H_
#define SKIA_EXT_CONVOLVER_H_

#include <cmath>
#include <vector>

#include "base/basictypes.h"
#include "base/cpu.h"
#include "third_party/skia/include/core/SkSize.h"
#include "third_party/skia/include/core/SkTypes.h"

// We can build SSE2 optimized versions for all x86 CPUs
// except when building for the IOS emulator.
#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_IOS)
#define SIMD_SSE2 1
#define SIMD_PADDING 8  // 8 * int16
#endif

#if defined (ARCH_CPU_MIPS_FAMILY) && \
    defined(__mips_dsp) && (__mips_dsp_rev >= 2)
#define SIMD_MIPS_DSPR2 1
#endif
// avoid confusion with Mac OS X's math library (Carbon)
#if defined(__APPLE__)
#undef FloatToFixed
#undef FixedToFloat
#endif

namespace skia {

// Represents a filter in one dimension. Each output pixel has one entry in this
// object for the filter values contributing to it. You build up the filter
// list by calling AddFilter for each output pixel (in order).
//
// We do 2-dimensional convolution by first convolving each row by one
// ConvolutionFilter1D, then convolving each column by another one.
//
// Entries are stored in fixed point, shifted left by kShiftBits.
class ConvolutionFilter1D {
 public:
  typedef short Fixed;

  // The number of bits that fixed point values are shifted by.
  enum { kShiftBits = 14 };

  SK_API ConvolutionFilter1D();
  SK_API ~ConvolutionFilter1D();

  // Convert between floating point and our fixed point representation.
  static Fixed FloatToFixed(float f) {
    return static_cast<Fixed>(f * (1 << kShiftBits));
  }
  static unsigned char FixedToChar(Fixed x) {
    return static_cast<unsigned char>(x >> kShiftBits);
  }
  static float FixedToFloat(Fixed x) {
    // The cast relies on Fixed being a short, implying that on
    // the platforms we care about all (16) bits will fit into
    // the mantissa of a (32-bit) float.
    COMPILE_ASSERT(sizeof(Fixed) == 2, fixed_type_should_fit_in_float_mantissa);
    float raw = static_cast<float>(x);
    return ldexpf(raw, -kShiftBits);
  }

  // Returns the maximum pixel span of a filter.
  int max_filter() const { return max_filter_; }

  // Returns the number of filters in this filter. This is the dimension of the
  // output image.
  int num_values() const { return static_cast<int>(filters_.size()); }

  // Appends the given list of scaling values for generating a given output
  // pixel. |filter_offset| is the distance from the edge of the image to where
  // the scaling factors start. The scaling factors apply to the source pixels
  // starting from this position, and going for the next |filter_length| pixels.
  //
  // You will probably want to make sure your input is normalized (that is,
  // all entries in |filter_values| sub to one) to prevent affecting the overall
  // brighness of the image.
  //
  // The filter_length must be > 0.
  //
  // This version will automatically convert your input to fixed point.
  SK_API void AddFilter(int filter_offset,
                        const float* filter_values,
                        int filter_length);

  // Same as the above version, but the input is already fixed point.
  void AddFilter(int filter_offset,
                 const Fixed* filter_values,
                 int filter_length);

  // Retrieves a filter for the given |value_offset|, a position in the output
  // image in the direction we're convolving. The offset and length of the
  // filter values are put into the corresponding out arguments (see AddFilter
  // above for what these mean), and a pointer to the first scaling factor is
  // returned. There will be |filter_length| values in this array.
  inline const Fixed* FilterForValue(int value_offset,
                                     int* filter_offset,
                                     int* filter_length) const {
    const FilterInstance& filter = filters_[value_offset];
    *filter_offset = filter.offset;
    *filter_length = filter.trimmed_length;
    if (filter.trimmed_length == 0) {
      return NULL;
    }
    return &filter_values_[filter.data_location];
  }

  // Retrieves the filter for the offset 0, presumed to be the one and only.
  // The offset and length of the filter values are put into the corresponding
  // out arguments (see AddFilter). Note that |filter_legth| and
  // |specified_filter_length| may be different if leading/trailing zeros of the
  // original floating point form were clipped.
  // There will be |filter_length| values in the return array.
  // Returns NULL if the filter is 0-length (for instance when all floating
  // point values passed to AddFilter were clipped to 0).
  SK_API const Fixed* GetSingleFilter(int* specified_filter_length,
                                      int* filter_offset,
                                      int* filter_length) const;

  inline void PaddingForSIMD() {
    // Padding |padding_count| of more dummy coefficients after the coefficients
    // of last filter to prevent SIMD instructions which load 8 or 16 bytes
    // together to access invalid memory areas. We are not trying to align the
    // coefficients right now due to the opaqueness of <vector> implementation.
    // This has to be done after all |AddFilter| calls.
#ifdef SIMD_PADDING
    for (int i = 0; i < SIMD_PADDING; ++i)
      filter_values_.push_back(static_cast<Fixed>(0));
#endif
  }

 private:
  struct FilterInstance {
    // Offset within filter_values for this instance of the filter.
    int data_location;

    // Distance from the left of the filter to the center. IN PIXELS
    int offset;

    // Number of values in this filter instance.
    int trimmed_length;

    // Filter length as specified. Note that this may be different from
    // 'trimmed_length' if leading/trailing zeros of the original floating
    // point form were clipped differently on each tail.
    int length;
  };

  // Stores the information for each filter added to this class.
  std::vector<FilterInstance> filters_;

  // We store all the filter values in this flat list, indexed by
  // |FilterInstance.data_location| to avoid the mallocs required for storing
  // each one separately.
  std::vector<Fixed> filter_values_;

  // The maximum size of any filter we've added.
  int max_filter_;
};

// Does a two-dimensional convolution on the given source image.
//
// It is assumed the source pixel offsets referenced in the input filters
// reference only valid pixels, so the source image size is not required. Each
// row of the source image starts |source_byte_row_stride| after the previous
// one (this allows you to have rows with some padding at the end).
//
// The result will be put into the given output buffer. The destination image
// size will be xfilter.num_values() * yfilter.num_values() pixels. It will be
// in rows of exactly xfilter.num_values() * 4 bytes.
//
// |source_has_alpha| is a hint that allows us to avoid doing computations on
// the alpha channel if the image is opaque. If you don't know, set this to
// true and it will work properly, but setting this to false will be a few
// percent faster if you know the image is opaque.
//
// The layout in memory is assumed to be 4-bytes per pixel in B-G-R-A order
// (this is ARGB when loaded into 32-bit words on a little-endian machine).
SK_API void BGRAConvolve2D(const unsigned char* source_data,
                           int source_byte_row_stride,
                           bool source_has_alpha,
                           const ConvolutionFilter1D& xfilter,
                           const ConvolutionFilter1D& yfilter,
                           int output_byte_row_stride,
                           unsigned char* output,
                           bool use_simd_if_possible);

// Does a 1D convolution of the given source image along the X dimension on
// a single channel of the bitmap.
//
// The function uses the same convolution kernel for each pixel. That kernel
// must be added to |filter| at offset 0. This is a most straightforward
// implementation of convolution, intended chiefly for development purposes.
SK_API void SingleChannelConvolveX1D(const unsigned char* source_data,
                                     int source_byte_row_stride,
                                     int input_channel_index,
                                     int input_channel_count,
                                     const ConvolutionFilter1D& filter,
                                     const SkISize& image_size,
                                     unsigned char* output,
                                     int output_byte_row_stride,
                                     int output_channel_index,
                                     int output_channel_count,
                                     bool absolute_values);

// Does a 1D convolution of the given source image along the Y dimension on
// a single channel of the bitmap.
SK_API void SingleChannelConvolveY1D(const unsigned char* source_data,
                                     int source_byte_row_stride,
                                     int input_channel_index,
                                     int input_channel_count,
                                     const ConvolutionFilter1D& filter,
                                     const SkISize& image_size,
                                     unsigned char* output,
                                     int output_byte_row_stride,
                                     int output_channel_index,
                                     int output_channel_count,
                                     bool absolute_values);

// Set up the |filter| instance with a gaussian kernel. |kernel_sigma| is the
// parameter of gaussian. If |derivative| is true, the kernel will be that of
// the first derivative. Intended for use with the two routines above.
SK_API void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter,
                                           float kernel_sigma,
                                           bool derivative);

}  // namespace skia

#endif  // SKIA_EXT_CONVOLVER_H_