1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <string.h>
#include <time.h>
#include <vector>
#include "base/basictypes.h"
#include "skia/ext/convolver.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace skia {
namespace {
// Fills the given filter with impulse functions for the range 0->num_entries.
void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
float one = 1.0f;
for (int i = 0; i < num_entries; i++)
filter->AddFilter(i, &one, 1);
}
// Filters the given input with the impulse function, and verifies that it
// does not change.
void TestImpulseConvolution(const unsigned char* data, int width, int height) {
int byte_count = width * height * 4;
ConvolutionFilter1D filter_x;
FillImpulseFilter(width, &filter_x);
ConvolutionFilter1D filter_y;
FillImpulseFilter(height, &filter_y);
std::vector<unsigned char> output;
output.resize(byte_count);
BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
filter_x.num_values() * 4, &output[0]);
// Output should exactly match input.
EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
}
// Fills the destination filter with a box filter averaging every two pixels
// to produce the output.
void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
const float box[2] = { 0.5, 0.5 };
for (int i = 0; i < size; i++)
filter->AddFilter(i * 2, box, 2);
}
} // namespace
// Tests that each pixel, when set and run through the impulse filter, does
// not change.
TEST(Convolver, Impulse) {
// We pick an "odd" size that is not likely to fit on any boundaries so that
// we can see if all the widths and paddings are handled properly.
int width = 15;
int height = 31;
int byte_count = width * height * 4;
std::vector<unsigned char> input;
input.resize(byte_count);
unsigned char* input_ptr = &input[0];
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
for (int channel = 0; channel < 3; channel++) {
memset(input_ptr, 0, byte_count);
input_ptr[(y * width + x) * 4 + channel] = 0xff;
// Always set the alpha channel or it will attempt to "fix" it for us.
input_ptr[(y * width + x) * 4 + 3] = 0xff;
TestImpulseConvolution(input_ptr, width, height);
}
}
}
}
// Tests that using a box filter to halve an image results in every square of 4
// pixels in the original get averaged to a pixel in the output.
TEST(Convolver, Halve) {
static const int kSize = 16;
int src_width = kSize;
int src_height = kSize;
int src_row_stride = src_width * 4;
int src_byte_count = src_row_stride * src_height;
std::vector<unsigned char> input;
input.resize(src_byte_count);
int dest_width = src_width / 2;
int dest_height = src_height / 2;
int dest_byte_count = dest_width * dest_height * 4;
std::vector<unsigned char> output;
output.resize(dest_byte_count);
// First fill the array with a bunch of random data.
srand(static_cast<unsigned>(time(NULL)));
for (int i = 0; i < src_byte_count; i++)
input[i] = rand() * 255 / RAND_MAX;
// Compute the filters.
ConvolutionFilter1D filter_x, filter_y;
FillBoxFilter(dest_width, &filter_x);
FillBoxFilter(dest_height, &filter_y);
// Do the convolution.
BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y,
filter_x.num_values() * 4, &output[0]);
// Compute the expected results and check, allowing for a small difference
// to account for rounding errors.
for (int y = 0; y < dest_height; y++) {
for (int x = 0; x < dest_width; x++) {
for (int channel = 0; channel < 4; channel++) {
int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
int value = input[src_offset] + // Top left source pixel.
input[src_offset + 4] + // Top right source pixel.
input[src_offset + src_row_stride] + // Lower left.
input[src_offset + src_row_stride + 4]; // Lower right.
value /= 4; // Average.
int difference = value - output[(y * dest_width + x) * 4 + channel];
EXPECT_TRUE(difference >= -1 || difference <= 1);
}
}
}
}
// Tests the optimization in Convolver1D::AddFilter that avoids storing
// leading/trailing zeroes.
TEST(Convolver, AddFilter) {
skia::ConvolutionFilter1D filter;
const skia::ConvolutionFilter1D::Fixed* values = NULL;
int filter_offset = 0;
int filter_length = 0;
// An all-zero filter is handled correctly, all factors ignored
static const float factors1[] = { 0.0f, 0.0f, 0.0f };
filter.AddFilter(11, factors1, arraysize(factors1));
ASSERT_EQ(0, filter.max_filter());
ASSERT_EQ(1, filter.num_values());
values = filter.FilterForValue(0, &filter_offset, &filter_length);
ASSERT_TRUE(values == NULL); // No values => NULL.
ASSERT_EQ(11, filter_offset); // Same as input offset.
ASSERT_EQ(0, filter_length); // But no factors since all are zeroes.
// Zeroes on the left are ignored
static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };
filter.AddFilter(22, factors2, arraysize(factors2));
ASSERT_EQ(4, filter.max_filter());
ASSERT_EQ(2, filter.num_values());
values = filter.FilterForValue(1, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(23, filter_offset); // 22 plus 1 leading zero
ASSERT_EQ(4, filter_length); // 5 - 1 leading zero
// Zeroes on the right are ignored
static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
filter.AddFilter(33, factors3, arraysize(factors3));
ASSERT_EQ(5, filter.max_filter());
ASSERT_EQ(3, filter.num_values());
values = filter.FilterForValue(2, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(33, filter_offset); // 33, same as input due to no leading zero
ASSERT_EQ(5, filter_length); // 7 - 2 trailing zeroes
// Zeroes in leading & trailing positions
static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
filter.AddFilter(44, factors4, arraysize(factors4));
ASSERT_EQ(5, filter.max_filter()); // No change from existing value.
ASSERT_EQ(4, filter.num_values());
values = filter.FilterForValue(3, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(46, filter_offset); // 44 plus 2 leading zeroes
ASSERT_EQ(3, filter_length); // 7 - (2 leading + 2 trailing) zeroes
// Zeroes surrounded by non-zero values are ignored
static const float factors5[] = { 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.0f };
filter.AddFilter(55, factors5, arraysize(factors5));
ASSERT_EQ(6, filter.max_filter());
ASSERT_EQ(5, filter.num_values());
values = filter.FilterForValue(4, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(57, filter_offset); // 55 plus 2 leading zeroes
ASSERT_EQ(6, filter_length); // 9 - (2 leading + 1 trailing) zeroes
// All-zero filters after the first one also work
static const float factors6[] = { 0.0f };
filter.AddFilter(66, factors6, arraysize(factors6));
ASSERT_EQ(6, filter.max_filter());
ASSERT_EQ(6, filter.num_values());
values = filter.FilterForValue(5, &filter_offset, &filter_length);
ASSERT_TRUE(values == NULL); // filter_length == 0 => values is NULL
ASSERT_EQ(66, filter_offset); // value passed in
ASSERT_EQ(0, filter_length);
}
} // namespace skia
|