summaryrefslogtreecommitdiffstats
path: root/skia/ext/convolver_unittest.cc
blob: e833b45a7139fd84c817a4789a84d17229082477 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <string.h>
#include <time.h>
#include <algorithm>
#include <numeric>
#include <vector>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/time/time.h"
#include "skia/ext/convolver.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColorPriv.h"
#include "third_party/skia/include/core/SkRect.h"
#include "third_party/skia/include/core/SkTypes.h"

namespace skia {

namespace {

// Fills the given filter with impulse functions for the range 0->num_entries.
void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
  float one = 1.0f;
  for (int i = 0; i < num_entries; i++)
    filter->AddFilter(i, &one, 1);
}

// Filters the given input with the impulse function, and verifies that it
// does not change.
void TestImpulseConvolution(const unsigned char* data, int width, int height) {
  int byte_count = width * height * 4;

  ConvolutionFilter1D filter_x;
  FillImpulseFilter(width, &filter_x);

  ConvolutionFilter1D filter_y;
  FillImpulseFilter(height, &filter_y);

  std::vector<unsigned char> output;
  output.resize(byte_count);
  BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
                 filter_x.num_values() * 4, &output[0], false);

  // Output should exactly match input.
  EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
}

// Fills the destination filter with a box filter averaging every two pixels
// to produce the output.
void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
  const float box[2] = { 0.5, 0.5 };
  for (int i = 0; i < size; i++)
    filter->AddFilter(i * 2, box, 2);
}

}  // namespace

// Tests that each pixel, when set and run through the impulse filter, does
// not change.
TEST(Convolver, Impulse) {
  // We pick an "odd" size that is not likely to fit on any boundaries so that
  // we can see if all the widths and paddings are handled properly.
  int width = 15;
  int height = 31;
  int byte_count = width * height * 4;
  std::vector<unsigned char> input;
  input.resize(byte_count);

  unsigned char* input_ptr = &input[0];
  for (int y = 0; y < height; y++) {
    for (int x = 0; x < width; x++) {
      for (int channel = 0; channel < 3; channel++) {
        memset(input_ptr, 0, byte_count);
        input_ptr[(y * width + x) * 4 + channel] = 0xff;
        // Always set the alpha channel or it will attempt to "fix" it for us.
        input_ptr[(y * width + x) * 4 + 3] = 0xff;
        TestImpulseConvolution(input_ptr, width, height);
      }
    }
  }
}

// Tests that using a box filter to halve an image results in every square of 4
// pixels in the original get averaged to a pixel in the output.
TEST(Convolver, Halve) {
  static const int kSize = 16;

  int src_width = kSize;
  int src_height = kSize;
  int src_row_stride = src_width * 4;
  int src_byte_count = src_row_stride * src_height;
  std::vector<unsigned char> input;
  input.resize(src_byte_count);

  int dest_width = src_width / 2;
  int dest_height = src_height / 2;
  int dest_byte_count = dest_width * dest_height * 4;
  std::vector<unsigned char> output;
  output.resize(dest_byte_count);

  // First fill the array with a bunch of random data.
  srand(static_cast<unsigned>(time(NULL)));
  for (int i = 0; i < src_byte_count; i++)
    input[i] = rand() * 255 / RAND_MAX;

  // Compute the filters.
  ConvolutionFilter1D filter_x, filter_y;
  FillBoxFilter(dest_width, &filter_x);
  FillBoxFilter(dest_height, &filter_y);

  // Do the convolution.
  BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y,
                 filter_x.num_values() * 4, &output[0], false);

  // Compute the expected results and check, allowing for a small difference
  // to account for rounding errors.
  for (int y = 0; y < dest_height; y++) {
    for (int x = 0; x < dest_width; x++) {
      for (int channel = 0; channel < 4; channel++) {
        int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
        int value = input[src_offset] +  // Top left source pixel.
                    input[src_offset + 4] +  // Top right source pixel.
                    input[src_offset + src_row_stride] +  // Lower left.
                    input[src_offset + src_row_stride + 4];  // Lower right.
        value /= 4;  // Average.
        int difference = value - output[(y * dest_width + x) * 4 + channel];
        EXPECT_TRUE(difference >= -1 || difference <= 1);
      }
    }
  }
}

// Tests the optimization in Convolver1D::AddFilter that avoids storing
// leading/trailing zeroes.
TEST(Convolver, AddFilter) {
  skia::ConvolutionFilter1D filter;

  const skia::ConvolutionFilter1D::Fixed* values = NULL;
  int filter_offset = 0;
  int filter_length = 0;

  // An all-zero filter is handled correctly, all factors ignored
  static const float factors1[] = { 0.0f, 0.0f, 0.0f };
  filter.AddFilter(11, factors1, arraysize(factors1));
  ASSERT_EQ(0, filter.max_filter());
  ASSERT_EQ(1, filter.num_values());

  values = filter.FilterForValue(0, &filter_offset, &filter_length);
  ASSERT_TRUE(values == NULL);   // No values => NULL.
  ASSERT_EQ(11, filter_offset);  // Same as input offset.
  ASSERT_EQ(0, filter_length);   // But no factors since all are zeroes.

  // Zeroes on the left are ignored
  static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };
  filter.AddFilter(22, factors2, arraysize(factors2));
  ASSERT_EQ(4, filter.max_filter());
  ASSERT_EQ(2, filter.num_values());

  values = filter.FilterForValue(1, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(23, filter_offset);  // 22 plus 1 leading zero
  ASSERT_EQ(4, filter_length);   // 5 - 1 leading zero

  // Zeroes on the right are ignored
  static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
  filter.AddFilter(33, factors3, arraysize(factors3));
  ASSERT_EQ(5, filter.max_filter());
  ASSERT_EQ(3, filter.num_values());

  values = filter.FilterForValue(2, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(33, filter_offset);  // 33, same as input due to no leading zero
  ASSERT_EQ(5, filter_length);   // 7 - 2 trailing zeroes

  // Zeroes in leading & trailing positions
  static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
  filter.AddFilter(44, factors4, arraysize(factors4));
  ASSERT_EQ(5, filter.max_filter());  // No change from existing value.
  ASSERT_EQ(4, filter.num_values());

  values = filter.FilterForValue(3, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(46, filter_offset);  // 44 plus 2 leading zeroes
  ASSERT_EQ(3, filter_length);   // 7 - (2 leading + 2 trailing) zeroes

  // Zeroes surrounded by non-zero values are ignored
  static const float factors5[] = { 0.0f, 0.0f,
                                    1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
                                    0.0f };
  filter.AddFilter(55, factors5, arraysize(factors5));
  ASSERT_EQ(6, filter.max_filter());
  ASSERT_EQ(5, filter.num_values());

  values = filter.FilterForValue(4, &filter_offset, &filter_length);
  ASSERT_TRUE(values != NULL);
  ASSERT_EQ(57, filter_offset);  // 55 plus 2 leading zeroes
  ASSERT_EQ(6, filter_length);   // 9 - (2 leading + 1 trailing) zeroes

  // All-zero filters after the first one also work
  static const float factors6[] = { 0.0f };
  filter.AddFilter(66, factors6, arraysize(factors6));
  ASSERT_EQ(6, filter.max_filter());
  ASSERT_EQ(6, filter.num_values());

  values = filter.FilterForValue(5, &filter_offset, &filter_length);
  ASSERT_TRUE(values == NULL);   // filter_length == 0 => values is NULL
  ASSERT_EQ(66, filter_offset);  // value passed in
  ASSERT_EQ(0, filter_length);
}

void VerifySIMD(unsigned int source_width,
                unsigned int source_height,
                unsigned int dest_width,
                unsigned int dest_height) {
  float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f };
  // Preparing convolve coefficients.
  ConvolutionFilter1D x_filter, y_filter;
  for (unsigned int p = 0; p < dest_width; ++p) {
    unsigned int offset = source_width * p / dest_width;
    EXPECT_LT(offset, source_width);
    x_filter.AddFilter(offset, filter,
                       std::min<int>(arraysize(filter),
                                     source_width - offset));
  }
  x_filter.PaddingForSIMD();
  for (unsigned int p = 0; p < dest_height; ++p) {
    unsigned int offset = source_height * p / dest_height;
    y_filter.AddFilter(offset, filter,
                       std::min<int>(arraysize(filter),
                                     source_height - offset));
  }
  y_filter.PaddingForSIMD();

  // Allocate input and output skia bitmap.
  SkBitmap source, result_c, result_sse;
  source.allocN32Pixels(source_width, source_height);
  result_c.allocN32Pixels(dest_width, dest_height);
  result_sse.allocN32Pixels(dest_width, dest_height);

  // Randomize source bitmap for testing.
  unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels());
  for (int y = 0; y < source.height(); y++) {
    for (unsigned int x = 0; x < source.rowBytes(); x++)
      src_ptr[x] = rand() % 255;
    src_ptr += source.rowBytes();
  }

  // Test both cases with different has_alpha.
  for (int alpha = 0; alpha < 2; alpha++) {
    // Convolve using C code.
    base::TimeTicks resize_start;
    base::TimeDelta delta_c, delta_sse;
    unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels());
    unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels());

    resize_start = base::TimeTicks::Now();
    BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
                   static_cast<int>(source.rowBytes()),
                   (alpha != 0), x_filter, y_filter,
                   static_cast<int>(result_c.rowBytes()), r1, false);
    delta_c = base::TimeTicks::Now() - resize_start;

    resize_start = base::TimeTicks::Now();
    // Convolve using SSE2 code
    BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
                   static_cast<int>(source.rowBytes()),
                   (alpha != 0), x_filter, y_filter,
                   static_cast<int>(result_sse.rowBytes()), r2, true);
    delta_sse = base::TimeTicks::Now() - resize_start;

    // Unfortunately I could not enable the performance check now.
    // Most bots use debug version, and there are great difference between
    // the code generation for intrinsic, etc. In release version speed
    // difference was 150%-200% depend on alpha channel presence;
    // while in debug version speed difference was 96%-120%.
    // TODO(jiesun): optimize further until we could enable this for
    // debug version too.
    // EXPECT_LE(delta_sse, delta_c);

    int64 c_us = delta_c.InMicroseconds();
    int64 sse_us = delta_sse.InMicroseconds();
    VLOG(1) << "from:" << source_width << "x" << source_height
            << " to:" << dest_width << "x" << dest_height
            << (alpha ? " with alpha" : " w/o alpha");
    VLOG(1) << "c:" << c_us << " sse:" << sse_us;
    VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us;

    // Comparing result.
    for (unsigned int i = 0; i < dest_height; i++) {
      EXPECT_FALSE(memcmp(r1, r2, dest_width * 4)); // RGBA always
      r1 += result_c.rowBytes();
      r2 += result_sse.rowBytes();
    }
  }
}

TEST(Convolver, VerifySIMDEdgeCases) {
  srand(static_cast<unsigned int>(time(0)));
  // Loop over all possible (small) image sizes
  for (unsigned int width = 1; width < 20; width++) {
    for (unsigned int height = 1; height < 20; height++) {
      VerifySIMD(width, height, 8, 8);
      VerifySIMD(8, 8, width, height);
    }
  }
}

// Verify that lage upscales/downscales produce the same result
// with and without SIMD.
TEST(Convolver, VerifySIMDPrecision) {
  int source_sizes[][2] = { {1920, 1080}, {1377, 523}, {325, 241} };
  int dest_sizes[][2] = { {1280, 1024}, {177, 123} };

  srand(static_cast<unsigned int>(time(0)));

  // Loop over some specific source and destination dimensions.
  for (unsigned int i = 0; i < arraysize(source_sizes); ++i) {
    unsigned int source_width = source_sizes[i][0];
    unsigned int source_height = source_sizes[i][1];
    for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) {
      unsigned int dest_width = dest_sizes[j][0];
      unsigned int dest_height = dest_sizes[j][1];
      VerifySIMD(source_width, source_height, dest_width, dest_height);
    }
  }
}

TEST(Convolver, SeparableSingleConvolution) {
  static const int kImgWidth = 1024;
  static const int kImgHeight = 1024;
  static const int kChannelCount = 3;
  static const int kStrideSlack = 22;
  ConvolutionFilter1D filter;
  const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
  filter.AddFilter(0, box, 5);

  // Allocate a source image and set to 0.
  const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
  int src_byte_count = src_row_stride * kImgHeight;
  std::vector<unsigned char> input;
  const int signal_x = kImgWidth / 2;
  const int signal_y = kImgHeight / 2;
  input.resize(src_byte_count, 0);
  // The image has a single impulse pixel in channel 1, smack in the middle.
  const int non_zero_pixel_index =
      signal_y * src_row_stride + signal_x * kChannelCount + 1;
  input[non_zero_pixel_index] = 255;

  // Destination will be a single channel image with stide matching width.
  const int dest_row_stride = kImgWidth;
  const int dest_byte_count = dest_row_stride * kImgHeight;
  std::vector<unsigned char> output;
  output.resize(dest_byte_count);

  // Apply convolution in X.
  SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
                           filter, SkISize::Make(kImgWidth, kImgHeight),
                           &output[0], dest_row_stride, 0, 1, false);
  for (int x = signal_x - 2; x <= signal_x + 2; ++x)
    EXPECT_GT(output[signal_y * dest_row_stride + x], 0);

  EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0);
  EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0);

  // Apply convolution in Y.
  SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
                           filter, SkISize::Make(kImgWidth, kImgHeight),
                           &output[0], dest_row_stride, 0, 1, false);
  for (int y = signal_y - 2; y <= signal_y + 2; ++y)
    EXPECT_GT(output[y * dest_row_stride + signal_x], 0);

  EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0);
  EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0);

  EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0);
  EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0);

  // The main point of calling this is to invoke the routine on input without
  // padding.
  std::vector<unsigned char> output2;
  output2.resize(dest_byte_count);
  SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1,
                           filter, SkISize::Make(kImgWidth, kImgHeight),
                           &output2[0], dest_row_stride, 0, 1, false);
  // This should be a result of 2D convolution.
  for (int x = signal_x - 2; x <= signal_x + 2; ++x) {
    for (int y = signal_y - 2; y <= signal_y + 2; ++y)
      EXPECT_GT(output2[y * dest_row_stride + x], 0);
  }
  EXPECT_EQ(output2[0], 0);
  EXPECT_EQ(output2[dest_row_stride - 1], 0);
  EXPECT_EQ(output2[dest_byte_count - 1], 0);
}

TEST(Convolver, SeparableSingleConvolutionEdges) {
  // The purpose of this test is to check if the implementation treats correctly
  // edges of the image.
  static const int kImgWidth = 600;
  static const int kImgHeight = 800;
  static const int kChannelCount = 3;
  static const int kStrideSlack = 22;
  static const int kChannel = 1;
  ConvolutionFilter1D filter;
  const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
  filter.AddFilter(0, box, 5);

  // Allocate a source image and set to 0.
  int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
  int src_byte_count = src_row_stride * kImgHeight;
  std::vector<unsigned char> input(src_byte_count);

  // Draw a frame around the image.
  for (int i = 0; i < src_byte_count; ++i) {
    int row = i / src_row_stride;
    int col = i % src_row_stride / kChannelCount;
    int channel = i % src_row_stride % kChannelCount;
    if (channel != kChannel || col > kImgWidth) {
      input[i] = 255;
    } else if (row == 0 || col == 0 ||
               col == kImgWidth - 1 || row == kImgHeight - 1) {
      input[i] = 100;
    } else if (row == 1 || col == 1 ||
               col == kImgWidth - 2 || row == kImgHeight - 2) {
      input[i] = 200;
    } else {
      input[i] = 0;
    }
  }

  // Destination will be a single channel image with stide matching width.
  int dest_row_stride = kImgWidth;
  int dest_byte_count = dest_row_stride * kImgHeight;
  std::vector<unsigned char> output;
  output.resize(dest_byte_count);

  // Apply convolution in X.
  SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
                           filter, SkISize::Make(kImgWidth, kImgHeight),
                           &output[0], dest_row_stride, 0, 1, false);

  // Sadly, comparison is not as simple as retaining all values.
  int invalid_values = 0;
  const unsigned char first_value = output[0];
  EXPECT_NEAR(first_value, 100, 1);
  for (int i = 0; i < dest_row_stride; ++i) {
    if (output[i] != first_value)
      ++invalid_values;
  }
  EXPECT_EQ(0, invalid_values);

  int test_row = 22;
  EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1);
  EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1);
  EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1);
  EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1);
  EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1);
  EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1);
  EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1);
  EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1);

  SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
                           filter, SkISize::Make(kImgWidth, kImgHeight),
                           &output[0], dest_row_stride, 0, 1, false);

  int test_column = 42;
  EXPECT_NEAR(output[test_column], 100, 1);
  EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1);
  EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1);
  EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1);

  EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1);
  EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1);
  EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1);
  EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1);
}

TEST(Convolver, SetUpGaussianConvolutionFilter) {
  ConvolutionFilter1D smoothing_filter;
  ConvolutionFilter1D gradient_filter;
  SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false);
  SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true);

  int specified_filter_length;
  int filter_offset;
  int filter_length;

  const ConvolutionFilter1D::Fixed* smoothing_kernel =
      smoothing_filter.GetSingleFilter(
          &specified_filter_length, &filter_offset, &filter_length);
  EXPECT_TRUE(smoothing_kernel);
  std::vector<float> fp_smoothing_kernel(filter_length);
  std::transform(smoothing_kernel,
                 smoothing_kernel + filter_length,
                 fp_smoothing_kernel.begin(),
                 ConvolutionFilter1D::FixedToFloat);
  // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[.
  EXPECT_NEAR(std::accumulate(
      fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f),
              1.0f, 0.01f);
  EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(),
                              fp_smoothing_kernel.end()), 0.0f);
  EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(),
                              fp_smoothing_kernel.end()), 1.0f);

  const ConvolutionFilter1D::Fixed* gradient_kernel =
      gradient_filter.GetSingleFilter(
          &specified_filter_length, &filter_offset, &filter_length);
  EXPECT_TRUE(gradient_kernel);
  std::vector<float> fp_gradient_kernel(filter_length);
  std::transform(gradient_kernel,
                 gradient_kernel + filter_length,
                 fp_gradient_kernel.begin(),
                 ConvolutionFilter1D::FixedToFloat);
  // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[.
  EXPECT_NEAR(std::accumulate(
      fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f),
              0.0f, 0.01f);
  EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(),
                              fp_gradient_kernel.end()), -1.5f);
  EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(),
                              fp_gradient_kernel.end()), 0.0f);
  EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(),
                              fp_gradient_kernel.end()), 1.5f);
  EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(),
                              fp_gradient_kernel.end()), 0.0f);
}

}  // namespace skia