1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <iomanip>
#include <vector>
#include "base/basictypes.h"
#include "base/file_util.h"
#include "base/string_util.h"
#include "skia/ext/image_operations.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkRect.h"
#include "ui/gfx/codec/png_codec.h"
namespace {
// Computes the average pixel value for the given range, inclusive.
uint32_t AveragePixel(const SkBitmap& bmp,
int x_min, int x_max,
int y_min, int y_max) {
float accum[4] = {0, 0, 0, 0};
int count = 0;
for (int y = y_min; y <= y_max; y++) {
for (int x = x_min; x <= x_max; x++) {
uint32_t cur = *bmp.getAddr32(x, y);
accum[0] += SkColorGetB(cur);
accum[1] += SkColorGetG(cur);
accum[2] += SkColorGetR(cur);
accum[3] += SkColorGetA(cur);
count++;
}
}
return SkColorSetARGB(static_cast<unsigned char>(accum[3] / count),
static_cast<unsigned char>(accum[2] / count),
static_cast<unsigned char>(accum[1] / count),
static_cast<unsigned char>(accum[0] / count));
}
// Computes the average pixel (/color) value for the given colors.
SkColor AveragePixel(const SkColor colors[], size_t color_count) {
float accum[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
for (size_t i = 0; i < color_count; ++i) {
const SkColor cur = colors[i];
accum[0] += static_cast<float>(SkColorGetA(cur));
accum[1] += static_cast<float>(SkColorGetR(cur));
accum[2] += static_cast<float>(SkColorGetG(cur));
accum[3] += static_cast<float>(SkColorGetB(cur));
}
const SkColor average_color =
SkColorSetARGB(static_cast<uint8_t>(accum[0] / color_count),
static_cast<uint8_t>(accum[1] / color_count),
static_cast<uint8_t>(accum[2] / color_count),
static_cast<uint8_t>(accum[3] / color_count));
return average_color;
}
void PrintPixel(const SkBitmap& bmp,
int x_min, int x_max,
int y_min, int y_max) {
char str[128];
for (int y = y_min; y <= y_max; ++y) {
for (int x = x_min; x <= x_max; ++x) {
const uint32_t cur = *bmp.getAddr32(x, y);
base::snprintf(str, sizeof(str), "bmp[%d,%d] = %08X", x, y, cur);
ADD_FAILURE() << str;
}
}
}
// Returns the euclidian distance between two RGBA colors interpreted
// as 4-components vectors.
//
// Notes:
// - This is a really poor definition of color distance. Yet it
// is "good enough" for our uses here.
// - More realistic measures like the various Delta E formulas defined
// by CIE are way more complex and themselves require the RGBA to
// to transformed into CIELAB (typically via sRGB first).
// - The static_cast<int> below are needed to avoid interpreting "negative"
// differences as huge positive values.
float ColorsEuclidianDistance(const SkColor a, const SkColor b) {
int b_int_diff = static_cast<int>(SkColorGetB(a) - SkColorGetB(b));
int g_int_diff = static_cast<int>(SkColorGetG(a) - SkColorGetG(b));
int r_int_diff = static_cast<int>(SkColorGetR(a) - SkColorGetR(b));
int a_int_diff = static_cast<int>(SkColorGetA(a) - SkColorGetA(b));
float b_float_diff = static_cast<float>(b_int_diff);
float g_float_diff = static_cast<float>(g_int_diff);
float r_float_diff = static_cast<float>(r_int_diff);
float a_float_diff = static_cast<float>(a_int_diff);
return sqrtf((b_float_diff * b_float_diff) + (g_float_diff * g_float_diff) +
(r_float_diff * r_float_diff) + (a_float_diff * a_float_diff));
}
// Returns true if each channel of the given two colors are "close." This is
// used for comparing colors where rounding errors may cause off-by-one.
bool ColorsClose(uint32_t a, uint32_t b) {
return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) < 2 &&
abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) < 2 &&
abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) < 2 &&
abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) < 2;
}
void FillDataToBitmap(int w, int h, SkBitmap* bmp) {
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const uint8_t component = static_cast<uint8_t>(y * w + x);
const SkColor pixel = SkColorSetARGB(component, component,
component, component);
*bmp->getAddr32(x, y) = pixel;
}
}
}
// Draws a horizontal and vertical grid into the w x h bitmap passed in.
// Each line in the grid is drawn with a width of "grid_width" pixels,
// and those lines repeat every "grid_pitch" pixels. The top left pixel (0, 0)
// is considered to be part of a grid line.
// The pixels that fall on a line are colored with "grid_color", while those
// outside of the lines are colored in "background_color".
// Note that grid_with can be greather than or equal to grid_pitch, in which
// case the resulting bitmap will be a solid color "grid_color".
void DrawGridToBitmap(int w, int h,
SkColor background_color, SkColor grid_color,
int grid_pitch, int grid_width,
SkBitmap* bmp) {
ASSERT_GT(grid_pitch, 0);
ASSERT_GT(grid_width, 0);
ASSERT_NE(background_color, grid_color);
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
for (int y = 0; y < h; ++y) {
bool y_on_grid = ((y % grid_pitch) < grid_width);
for (int x = 0; x < w; ++x) {
bool on_grid = (y_on_grid || ((x % grid_pitch) < grid_width));
*bmp->getAddr32(x, y) = (on_grid ? grid_color : background_color);
}
}
}
// Draws a checkerboard pattern into the w x h bitmap passed in.
// Each rectangle is rect_w in width, rect_h in height.
// The colors alternate between color1 and color2, color1 being used
// in the rectangle at the top left corner.
void DrawCheckerToBitmap(int w, int h,
SkColor color1, SkColor color2,
int rect_w, int rect_h,
SkBitmap* bmp) {
ASSERT_GT(rect_w, 0);
ASSERT_GT(rect_h, 0);
ASSERT_NE(color1, color2);
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
for (int y = 0; y < h; ++y) {
bool y_bit = (((y / rect_h) & 0x1) == 0);
for (int x = 0; x < w; ++x) {
bool x_bit = (((x / rect_w) & 0x1) == 0);
bool use_color2 = (x_bit != y_bit); // xor
*bmp->getAddr32(x, y) = (use_color2 ? color2 : color1);
}
}
}
// DEBUG_BITMAP_GENERATION (0 or 1) controls whether the routines
// to save the test bitmaps are present. By default the test just fails
// without reading/writing files but it is then convenient to have
// a simple way to make the failing tests write out the input/output images
// to check them visually.
#define DEBUG_BITMAP_GENERATION (0)
#if DEBUG_BITMAP_GENERATION
void SaveBitmapToPNG(const SkBitmap& bmp, const char* path) {
SkAutoLockPixels lock(bmp);
std::vector<unsigned char> png;
gfx::PNGCodec::ColorFormat color_format = gfx::PNGCodec::FORMAT_RGBA;
if (!gfx::PNGCodec::Encode(
reinterpret_cast<const unsigned char*>(bmp.getPixels()),
color_format, bmp.width(), bmp.height(),
static_cast<int>(bmp.rowBytes()),
false, &png)) {
FAIL() << "Failed to encode image";
}
const FilePath fpath(path);
const int num_written =
file_util::WriteFile(fpath, reinterpret_cast<const char*>(&png[0]),
png.size());
if (num_written != static_cast<int>(png.size())) {
FAIL() << "Failed to write dest \"" << path << '"';
}
}
#endif // #if DEBUG_BITMAP_GENERATION
void CheckResampleToSame(skia::ImageOperations::ResizeMethod method) {
// Make our source bitmap.
const int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a resize of the full bitmap to the same size. The lanczos filter is good
// enough that we should get exactly the same image for output.
SkBitmap results = skia::ImageOperations::Resize(src, method, src_w, src_h);
ASSERT_EQ(src_w, results.width());
ASSERT_EQ(src_h, results.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels results_lock(results);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_EQ(*src.getAddr32(x, y), *results.getAddr32(x, y));
}
}
}
// Types defined outside of the ResizeShouldAverageColors test to allow
// use of the arraysize() macro.
//
// 'max_color_distance_override' is used in a max() call together with
// the value of 'max_color_distance' defined in a TestedPixel instance.
// Hence a value of 0.0 in 'max_color_distance_override' means
// "use the pixel-specific value" and larger values can be used to allow
// worse computation errors than provided in a TestedPixel instance.
struct TestedResizeMethod {
skia::ImageOperations::ResizeMethod method;
const char* name;
float max_color_distance_override;
};
struct TestedPixel {
int x;
int y;
float max_color_distance;
const char* name;
};
// Helper function used by the test "ResizeShouldAverageColors" below.
// Note that ASSERT_EQ does a "return;" on failure, hence we can't have
// a "bool" return value to reflect success. Hence "all_pixels_pass"
void CheckResizeMethodShouldAverageGrid(
const SkBitmap& src,
const TestedResizeMethod& tested_method,
int dest_w, int dest_h, SkColor average_color,
bool* method_passed) {
*method_passed = false;
// TODO(evannier): The math inside image_operations.cc is incorrect is off
// by half a pixel. As a result, the calculated distances become extremely
// large. Once the fix is in to correct this half pixel issue, most of these
// values can become a lot tighter.
const TestedPixel tested_pixels[] = {
// Corners
{ 0, 0, 59.0f, "Top left corner" },
{ 0, dest_h - 1, 2.3f, "Bottom left corner" },
{ dest_w - 1, 0, 7.1f, "Top right corner" },
{ dest_w - 1, dest_h - 1, 2.3f, "Bottom right corner" },
// Middle points of each side
{ dest_w / 2, 0, 1.0f, "Top middle" },
{ dest_w / 2, dest_h - 1, 1.0f, "Bottom middle" },
{ 0, dest_h / 2, 1.0f, "Left middle" },
{ dest_w - 1, dest_h / 2, 1.0f, "Right middle" },
// Center
{ dest_w / 2, dest_h / 2, 1.0f, "Center" }
};
// Resize the src
const skia::ImageOperations::ResizeMethod method = tested_method.method;
SkBitmap dest = skia::ImageOperations::Resize(src, method, dest_w, dest_h);
ASSERT_EQ(dest_w, dest.width());
ASSERT_EQ(dest_h, dest.height());
// Check that pixels match the expected average.
float max_observed_distance = 0.0f;
bool all_pixels_ok = true;
SkAutoLockPixels dest_lock(dest);
for (size_t pixel_index = 0;
pixel_index < arraysize(tested_pixels);
++pixel_index) {
const TestedPixel& tested_pixel = tested_pixels[pixel_index];
const int x = tested_pixel.x;
const int y = tested_pixel.y;
const float max_allowed_distance =
std::max(tested_pixel.max_color_distance,
tested_method.max_color_distance_override);
const SkColor actual_color = *dest.getAddr32(x, y);
// Check that the pixels away from the border region are very close
// to the expected average color
float distance = ColorsEuclidianDistance(average_color, actual_color);
EXPECT_LE(distance, max_allowed_distance)
<< "Resizing method: " << tested_method.name
<< ", pixel tested: " << tested_pixel.name
<< "(" << x << ", " << y << ")"
<< std::hex << std::showbase
<< ", expected (avg) hex: " << average_color
<< ", actual hex: " << actual_color;
if (distance > max_allowed_distance) {
all_pixels_ok = false;
}
if (distance > max_observed_distance) {
max_observed_distance = distance;
}
}
if (!all_pixels_ok) {
ADD_FAILURE() << "Maximum observed color distance for method "
<< tested_method.name << ": " << max_observed_distance;
#if DEBUG_BITMAP_GENERATION
char path[128];
base::snprintf(path, sizeof(path),
"/tmp/ResizeShouldAverageColors_%s_dest.png",
tested_method.name);
SaveBitmapToPNG(dest, path);
#endif // #if DEBUG_BITMAP_GENERATION
}
*method_passed = all_pixels_ok;
}
} // namespace
// Helper tests that saves bitmaps to PNGs in /tmp/ to visually check
// that the bitmap generation functions work as expected.
// Those tests are not enabled by default as verification is done
// manually/visually, however it is convenient to leave the functions
// in place.
#if 0 && DEBUG_BITMAP_GENERATION
TEST(ImageOperations, GenerateGradientBitmap) {
// Make our source bitmap.
const int src_w = 640, src_h = 480;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
SaveBitmapToPNG(src, "/tmp/gradient_640x480.png");
}
TEST(ImageOperations, GenerateGridBitmap) {
const int src_w = 640, src_h = 480, src_grid_pitch = 10, src_grid_width = 4;
const SkColor grid_color = SK_ColorRED, background_color = SK_ColorBLUE;
SkBitmap src;
DrawGridToBitmap(src_w, src_h,
background_color, grid_color,
src_grid_pitch, src_grid_width,
&src);
SaveBitmapToPNG(src, "/tmp/grid_640x408_10_4_red_blue.png");
}
TEST(ImageOperations, GenerateCheckerBitmap) {
const int src_w = 640, src_h = 480, rect_w = 10, rect_h = 4;
const SkColor color1 = SK_ColorRED, color2 = SK_ColorBLUE;
SkBitmap src;
DrawCheckerToBitmap(src_w, src_h, color1, color2, rect_w, rect_h, &src);
SaveBitmapToPNG(src, "/tmp/checker_640x408_10_4_red_blue.png");
}
#endif // #if ... && DEBUG_BITMAP_GENERATION
// Makes the bitmap 50% the size as the original using a box filter. This is
// an easy operation that we can check the results for manually.
TEST(ImageOperations, Halve) {
// Make our source bitmap.
int src_w = 30, src_h = 38;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap actual_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
ASSERT_EQ(src_w / 2, actual_results.width());
ASSERT_EQ(src_h / 2, actual_results.height());
// Compute the expected values & compare.
SkAutoLockPixels lock(actual_results);
for (int y = 0; y < actual_results.height(); y++) {
for (int x = 0; x < actual_results.width(); x++) {
// Note that those expressions take into account the "half-pixel"
// offset that comes into play due to considering the coordinates
// of the center of the pixels. So x * 2 is a simplification
// of ((x+0.5) * 2 - 1) and (x * 2 + 1) is really (x + 0.5) * 2.
// TODO(evannier): for now these stay broken because of the half pixel
// issue mentioned inside image_operations.cc. The code should read:
// int first_x = x * 2;
// int last_x = std::min(src_w - 1, x * 2 + 1);
// int first_y = y * 2;
// int last_y = std::min(src_h - 1, y * 2 + 1);
int first_x = std::max(0, x * 2 - 1);
int last_x = std::min(src_w - 1, x * 2);
int first_y = std::max(0, y * 2 - 1);
int last_y = std::min(src_h - 1, y * 2);
const uint32_t expected_color = AveragePixel(src,
first_x, last_x,
first_y, last_y);
const uint32_t actual_color = *actual_results.getAddr32(x, y);
const bool close = ColorsClose(expected_color, actual_color);
EXPECT_TRUE(close);
if (!close) {
char str[128];
base::snprintf(str, sizeof(str),
"exp[%d,%d] = %08X, actual[%d,%d] = %08X",
x, y, expected_color, x, y, actual_color);
ADD_FAILURE() << str;
PrintPixel(src, first_x, last_x, first_y, last_y);
}
}
}
}
TEST(ImageOperations, HalveSubset) {
// Make our source bitmap.
int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap full_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
ASSERT_EQ(src_w / 2, full_results.width());
ASSERT_EQ(src_h / 2, full_results.height());
// Now do a halving of a a subset, recall the destination subset is in the
// destination coordinate system (max = half of the original image size).
SkIRect subset_rect = { 2, 3, 3, 6 };
SkBitmap subset_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX,
src_w / 2, src_h / 2, subset_rect);
ASSERT_EQ(subset_rect.width(), subset_results.width());
ASSERT_EQ(subset_rect.height(), subset_results.height());
// The computed subset and the corresponding subset of the original image
// should be the same.
SkAutoLockPixels full_lock(full_results);
SkAutoLockPixels subset_lock(subset_results);
for (int y = 0; y < subset_rect.height(); y++) {
for (int x = 0; x < subset_rect.width(); x++) {
ASSERT_EQ(
*full_results.getAddr32(x + subset_rect.fLeft, y + subset_rect.fTop),
*subset_results.getAddr32(x, y));
}
}
}
// Resamples an image to the same image, it should give the same result.
TEST(ImageOperations, ResampleToSameHamming1) {
CheckResampleToSame(skia::ImageOperations::RESIZE_HAMMING1);
}
TEST(ImageOperations, ResampleToSameLanczos2) {
CheckResampleToSame(skia::ImageOperations::RESIZE_LANCZOS2);
}
TEST(ImageOperations, ResampleToSameLanczos3) {
CheckResampleToSame(skia::ImageOperations::RESIZE_LANCZOS3);
}
// Check that all Good/Better/Best, Box, Lanczos2 and Lanczos3 generate purple
// when resizing a 4x8 red/blue checker pattern by 1/16x1/16.
TEST(ImageOperations, ResizeShouldAverageColors) {
// Make our source bitmap.
const int src_w = 640, src_h = 480, checker_rect_w = 4, checker_rect_h = 8;
const SkColor checker_color1 = SK_ColorRED, checker_color2 = SK_ColorBLUE;
const int dest_w = src_w / (4 * checker_rect_w);
const int dest_h = src_h / (2 * checker_rect_h);
// Compute the expected (average) color
const SkColor colors[] = { checker_color1, checker_color2 };
const SkColor average_color = AveragePixel(colors, arraysize(colors));
// RESIZE_SUBPIXEL is only supported on Linux/non-GTV platforms.
static const TestedResizeMethod tested_methods[] = {
{ skia::ImageOperations::RESIZE_GOOD, "GOOD", 0.0f },
{ skia::ImageOperations::RESIZE_BETTER, "BETTER", 0.0f },
{ skia::ImageOperations::RESIZE_BEST, "BEST", 0.0f },
{ skia::ImageOperations::RESIZE_BOX, "BOX", 0.0f },
{ skia::ImageOperations::RESIZE_HAMMING1, "HAMMING1", 0.0f },
{ skia::ImageOperations::RESIZE_LANCZOS2, "LANCZOS2", 0.0f },
{ skia::ImageOperations::RESIZE_LANCZOS3, "LANCZOS3", 0.0f },
#if defined(OS_LINUX) && !defined(GTV)
// SUBPIXEL has slightly worse performance than the other filters:
// 6.324 Bottom left/right corners
// 5.099 Top left/right corners
// 2.828 Bottom middle
// 1.414 Top/Left/Right middle, center
//
// This is expected since, in order to judge RESIZE_SUBPIXEL accurately,
// we'd need to compute distances for each sub-pixel, and potentially
// tweak the test parameters so that expectations were realistic when
// looking at sub-pixels in isolation.
//
// Rather than going to these lengths, we added the "max_distance_override"
// field in TestedResizeMethod, intended for RESIZE_SUBPIXEL. It allows
// us to to enable its testing without having to lower the success criteria
// for the other methods. This procedure is distateful but defining
// a distance limit for each tested pixel for each method was judged to add
// unneeded complexity.
{ skia::ImageOperations::RESIZE_SUBPIXEL, "SUBPIXEL", 6.4f },
#endif
};
// Create our source bitmap.
SkBitmap src;
DrawCheckerToBitmap(src_w, src_h,
checker_color1, checker_color2,
checker_rect_w, checker_rect_h,
&src);
// For each method, downscale by 16 in each dimension,
// and check each tested pixel against the expected average color.
bool all_methods_ok = true;
for (size_t method_index = 0;
method_index < arraysize(tested_methods);
++method_index) {
bool pass = true;
CheckResizeMethodShouldAverageGrid(src,
tested_methods[method_index],
dest_w, dest_h, average_color,
&pass);
if (!pass) {
all_methods_ok = false;
}
}
#if DEBUG_BITMAP_GENERATION
if (!all_methods_ok) {
SaveBitmapToPNG(src, "/tmp/ResizeShouldAverageColors_src.png");
}
#endif // #if DEBUG_BITMAP_GENERATION
}
// Check that Lanczos2 and Lanczos3 thumbnails produce similar results
TEST(ImageOperations, CompareLanczosMethods) {
const int src_w = 640, src_h = 480, src_grid_pitch = 8, src_grid_width = 4;
const int dest_w = src_w / 4;
const int dest_h = src_h / 4;
// 5.0f is the maximum distance we see in this test given the current
// parameters. The value is very ad-hoc and the parameters of the scaling
// were picked to produce a small value. So this test is very much about
// revealing egregious regression rather than doing a good job at checking
// the math behind the filters.
// TODO(evannier): because of the half pixel error mentioned inside
// image_operations.cc, this distance is much larger than it should be.
// This should read:
// const float max_color_distance = 5.0f;
const float max_color_distance = 12.1f;
// Make our source bitmap.
SkColor grid_color = SK_ColorRED, background_color = SK_ColorBLUE;
SkBitmap src;
DrawGridToBitmap(src_w, src_h,
background_color, grid_color,
src_grid_pitch, src_grid_width,
&src);
// Resize the src using both methods.
SkBitmap dest_l2 = skia::ImageOperations::Resize(
src,
skia::ImageOperations::RESIZE_LANCZOS2,
dest_w, dest_h);
ASSERT_EQ(dest_w, dest_l2.width());
ASSERT_EQ(dest_h, dest_l2.height());
SkBitmap dest_l3 = skia::ImageOperations::Resize(
src,
skia::ImageOperations::RESIZE_LANCZOS3,
dest_w, dest_h);
ASSERT_EQ(dest_w, dest_l3.width());
ASSERT_EQ(dest_h, dest_l3.height());
// Compare the pixels produced by both methods.
float max_observed_distance = 0.0f;
bool all_pixels_ok = true;
SkAutoLockPixels l2_lock(dest_l2);
SkAutoLockPixels l3_lock(dest_l3);
for (int y = 0; y < dest_h; ++y) {
for (int x = 0; x < dest_w; ++x) {
const SkColor color_lanczos2 = *dest_l2.getAddr32(x, y);
const SkColor color_lanczos3 = *dest_l3.getAddr32(x, y);
float distance = ColorsEuclidianDistance(color_lanczos2, color_lanczos3);
EXPECT_LE(distance, max_color_distance)
<< "pixel tested: (" << x << ", " << y
<< std::hex << std::showbase
<< "), lanczos2 hex: " << color_lanczos2
<< ", lanczos3 hex: " << color_lanczos3
<< std::setprecision(2)
<< ", distance: " << distance;
if (distance > max_color_distance) {
all_pixels_ok = false;
}
if (distance > max_observed_distance) {
max_observed_distance = distance;
}
}
}
if (!all_pixels_ok) {
ADD_FAILURE() << "Maximum observed color distance: "
<< max_observed_distance;
#if DEBUG_BITMAP_GENERATION
SaveBitmapToPNG(src, "/tmp/CompareLanczosMethods_source.png");
SaveBitmapToPNG(dest_l2, "/tmp/CompareLanczosMethods_lanczos2.png");
SaveBitmapToPNG(dest_l3, "/tmp/CompareLanczosMethods_lanczos3.png");
#endif // #if DEBUG_BITMAP_GENERATION
}
}
|