1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdlib.h>
#include "skia/ext/image_operations.h"
#include "skia/include/SkColorPriv.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "SkBitmap.h"
namespace {
// Computes the average pixel value for the given range, inclusive.
uint32_t AveragePixel(const SkBitmap& bmp,
int x_min, int x_max,
int y_min, int y_max) {
float accum[4] = {0, 0, 0, 0};
int count = 0;
for (int y = y_min; y <= y_max; y++) {
for (int x = x_min; x <= x_max; x++) {
uint32_t cur = *bmp.getAddr32(x, y);
accum[0] += SkColorGetB(cur);
accum[1] += SkColorGetG(cur);
accum[2] += SkColorGetR(cur);
accum[3] += SkColorGetA(cur);
count++;
}
}
return SkColorSetARGB(static_cast<unsigned char>(accum[3] / count),
static_cast<unsigned char>(accum[2] / count),
static_cast<unsigned char>(accum[1] / count),
static_cast<unsigned char>(accum[0] / count));
}
// Returns true if each channel of the given two colors are "close." This is
// used for comparing colors where rounding errors may cause off-by-one.
bool ColorsClose(uint32_t a, uint32_t b) {
return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) < 2 &&
abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) < 2 &&
abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) < 2 &&
abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) < 2;
}
void FillDataToBitmap(int w, int h, SkBitmap* bmp) {
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
unsigned char* src_data =
reinterpret_cast<unsigned char*>(bmp->getAddr32(0, 0));
for (int i = 0; i < w * h; i++) {
src_data[i * 4 + 0] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 1] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 2] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 3] = static_cast<unsigned char>(i % 255);
}
}
} // namespace
// Makes the bitmap 50% the size as the original using a box filter. This is
// an easy operation that we can check the results for manually.
TEST(ImageOperations, Halve) {
// Make our source bitmap.
int src_w = 30, src_h = 38;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap actual_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
ASSERT_EQ(src_w / 2, actual_results.width());
ASSERT_EQ(src_h / 2, actual_results.height());
// Compute the expected values & compare.
SkAutoLockPixels lock(actual_results);
for (int y = 0; y < actual_results.height(); y++) {
for (int x = 0; x < actual_results.width(); x++) {
int first_x = std::max(0, x * 2 - 1);
int last_x = std::min(src_w - 1, x * 2);
int first_y = std::max(0, y * 2 - 1);
int last_y = std::min(src_h - 1, y * 2);
uint32_t expected_color = AveragePixel(src,
first_x, last_x, first_y, last_y);
EXPECT_TRUE(ColorsClose(expected_color, *actual_results.getAddr32(x, y)));
}
}
}
TEST(ImageOperations, HalveSubset) {
// Make our source bitmap.
int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap full_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
ASSERT_EQ(src_w / 2, full_results.width());
ASSERT_EQ(src_h / 2, full_results.height());
// Now do a halving of a a subset, recall the destination subset is in the
// destination coordinate system (max = half of the original image size).
gfx::Rect subset_rect(2, 3, 3, 6);
SkBitmap subset_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX,
src_w / 2, src_h / 2, subset_rect);
ASSERT_EQ(subset_rect.width(), subset_results.width());
ASSERT_EQ(subset_rect.height(), subset_results.height());
// The computed subset and the corresponding subset of the original image
// should be the same.
SkAutoLockPixels full_lock(full_results);
SkAutoLockPixels subset_lock(subset_results);
for (int y = 0; y < subset_rect.height(); y++) {
for (int x = 0; x < subset_rect.width(); x++) {
ASSERT_EQ(
*full_results.getAddr32(x + subset_rect.x(), y + subset_rect.y()),
*subset_results.getAddr32(x, y));
}
}
}
// Resamples an iamge to the same image, it should give almost the same result.
TEST(ImageOperations, ResampleToSame) {
// Make our source bitmap.
int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a resize of the full bitmap to the same size. The lanczos filter is good
// enough that we should get exactly the same image for output.
SkBitmap results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_LANCZOS3, src_w, src_h);
ASSERT_EQ(src_w, results.width());
ASSERT_EQ(src_h, results.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels results_lock(results);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_EQ(*src.getAddr32(x, y), *results.getAddr32(x, y));
}
}
}
// Blend two bitmaps together at 50% alpha and verify that the result
// is the middle-blend of the two.
TEST(ImageOperations, CreateBlendedBitmap) {
int src_w = 16, src_h = 16;
SkBitmap src_a;
src_a.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src_a.allocPixels();
SkBitmap src_b;
src_b.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src_b.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
*src_a.getAddr32(x, y) = SkColorSetARGB(255, 0, i * 2 % 255, i % 255);
*src_b.getAddr32(x, y) =
SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0);
i++;
}
}
// Shift to red.
SkBitmap blended = skia::ImageOperations::CreateBlendedBitmap(
src_a, src_b, 0.5);
SkAutoLockPixels srca_lock(src_a);
SkAutoLockPixels srcb_lock(src_b);
SkAutoLockPixels blended_lock(blended);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
int i = y * src_w + x;
EXPECT_EQ((255 + ((255 - i) % 255)) / 2,
SkColorGetA(*blended.getAddr32(x, y)));
EXPECT_EQ(i % 255 / 2,
SkColorGetR(*blended.getAddr32(x, y)));
EXPECT_EQ(((i * 2) % 255 + (i * 4) % 255) / 2,
SkColorGetG(*blended.getAddr32(x, y)));
EXPECT_EQ(i % 255 / 2,
SkColorGetB(*blended.getAddr32(x, y)));
}
}
}
// Test our masking functions.
TEST(ImageOperations, CreateMaskedBitmap) {
int src_w = 16, src_h = 16;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Generate alpha mask
SkBitmap alpha;
alpha.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
alpha.allocPixels();
unsigned char* src_data =
reinterpret_cast<unsigned char*>(alpha.getAddr32(0, 0));
for (int i = 0; i < src_w * src_h; i++) {
src_data[i * 4] = SkColorSetARGB(i + 128 % 255,
i + 128 % 255,
i + 64 % 255,
i + 0 % 255);
}
SkBitmap masked = skia::ImageOperations::CreateMaskedBitmap(src, alpha);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels masked_lock(masked);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
// Test that the alpha is equal.
SkColor src_pixel = *src.getAddr32(x, y);
SkColor alpha_pixel = *alpha.getAddr32(x, y);
SkColor masked_pixel = *masked.getAddr32(x, y);
// Test that the alpha is equal.
int alpha = (alpha_pixel & 0xff000000) >> SK_A32_SHIFT;
EXPECT_EQ(alpha, (masked_pixel & 0xff000000) >> SK_A32_SHIFT);
// Test that the colors are right - SkBitmaps have premultiplied alpha,
// so we can't just do a direct comparison.
EXPECT_EQ(SkColorGetR(masked_pixel),
SkAlphaMul(SkColorGetR(src_pixel), alpha));
}
}
}
// Testing blur without reimplementing the blur algorithm here is tough,
// so we just check to see if the pixels have moved in the direction we
// think they should move in (and also checking the wrapping behavior).
// This will allow us to tweak the blur algorithm to suit speed/visual
// needs without breaking the fundamentals.
TEST(ImageOperations, CreateBlurredBitmap) {
int src_w = 4, src_h = 4;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
int r = (y == 0) ? 255 : 0; // Make the top row red.
int g = (i % 2 == 0) ? 255 : 0; // Make green alternate in each pixel.
int b = (y == src_h - 1) ? 255 : 0; // Make the bottom row blue.
*src.getAddr32(x, y) = SkColorSetARGB(255, r, g, b);
i++;
}
}
// Perform a small blur (enough to shove the values in the direction we
// need - more would just be an unneccessary unit test slowdown).
SkBitmap blurred = skia::ImageOperations::CreateBlurredBitmap(src, 2);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels blurred_lock(blurred);
for (int y = 0, i = 0; y < src_w; y++) {
for (int x = 0; x < src_h; x++) {
SkColor src_pixel = *src.getAddr32(x, y);
SkColor blurred_pixel = *blurred.getAddr32(x, y);
if (y == 0) {
// We expect our red to have decreased, but our blue to have
// increased (from the wrapping from the bottom line).
EXPECT_TRUE(SkColorGetR(blurred_pixel) < SkColorGetR(src_pixel));
EXPECT_TRUE(SkColorGetB(blurred_pixel) > SkColorGetB(src_pixel));
} else if (y == src_h - 1) {
// Now for the opposite.
EXPECT_TRUE(SkColorGetB(blurred_pixel) < SkColorGetB(src_pixel));
EXPECT_TRUE(SkColorGetR(blurred_pixel) > SkColorGetR(src_pixel));
}
// Expect the green channel to have moved towards the center (but
// not past it).
if (i % 2 == 0) {
EXPECT_LT(SkColorGetG(blurred_pixel), SkColorGetG(src_pixel));
EXPECT_GE(SkColorGetG(blurred_pixel), static_cast<uint32>(128));
} else {
EXPECT_GT(SkColorGetG(blurred_pixel), SkColorGetG(src_pixel));
EXPECT_LE(SkColorGetG(blurred_pixel), static_cast<uint32>(128));
}
i++;
}
}
}
// Make sure that when shifting a bitmap without any shift parameters,
// the end result is close enough to the original (rounding errors
// notwithstanding).
TEST(ImageOperations, CreateHSLShiftedBitmapToSame) {
int src_w = 4, src_h = 4;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
*src.getAddr32(x, y) = SkColorSetARGB(i + 128 % 255,
i + 128 % 255, i + 64 % 255, i + 0 % 255);
i++;
}
}
float hsl[3] = { -1, -1, -1 };
SkBitmap shifted = skia::ImageOperations::CreateHSLShiftedBitmap(src, hsl);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels shifted_lock(shifted);
for (int y = 0; y < src_w; y++) {
for (int x = 0; x < src_h; x++) {
SkColor src_pixel = *src.getAddr32(x, y);
SkColor shifted_pixel = *shifted.getAddr32(x, y);
EXPECT_TRUE(ColorsClose(src_pixel, shifted_pixel));
}
}
}
// Shift a blue bitmap to red.
TEST(ImageOperations, CreateHSLShiftedBitmapHueOnly) {
int src_w = 16, src_h = 16;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
*src.getAddr32(x, y) = SkColorSetARGB(255, 0, 0, i % 255);
i++;
}
}
// Shift to red.
float hsl[3] = { 0, -1, -1 };
SkBitmap shifted = skia::ImageOperations::CreateHSLShiftedBitmap(src, hsl);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels shifted_lock(shifted);
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_TRUE(ColorsClose(*shifted.getAddr32(x, y),
SkColorSetARGB(255, i % 255, 0, 0)));
i++;
}
}
}
// Test our cropping.
TEST(ImageOperations, CreateCroppedBitmap) {
int src_w = 16, src_h = 16;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
SkBitmap cropped = skia::ImageOperations::CreateTiledBitmap(src, 4, 4,
8, 8);
ASSERT_EQ(8, cropped.width());
ASSERT_EQ(8, cropped.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels cropped_lock(cropped);
for (int y = 4; y < 12; y++) {
for (int x = 4; x < 12; x++) {
EXPECT_EQ(*src.getAddr32(x, y),
*cropped.getAddr32(x - 4, y - 4));
}
}
}
// Test whether our cropping correctly wraps across image boundaries.
TEST(ImageOperations, CreateCroppedBitmapWrapping) {
int src_w = 16, src_h = 16;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
SkBitmap cropped = skia::ImageOperations::CreateTiledBitmap(
src, src_w / 2, src_h / 2, src_w, src_h);
ASSERT_EQ(src_w, cropped.width());
ASSERT_EQ(src_h, cropped.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels cropped_lock(cropped);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_EQ(*src.getAddr32(x, y),
*cropped.getAddr32((x + src_w / 2) % src_w,
(y + src_h / 2) % src_h));
}
}
}
|