1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <cmath>
#include <vector>
#include "base/logging.h"
#include "skia/ext/recursive_gaussian_convolution.h"
namespace skia {
namespace {
// Takes the value produced by accumulating element-wise product of image with
// a kernel and brings it back into range.
// All of the filter scaling factors are in fixed point with kShiftBits bits of
// fractional part.
template<bool take_absolute>
inline unsigned char FloatTo8(float f) {
int a = static_cast<int>(f + 0.5f);
if (take_absolute)
a = std::abs(a);
else if (a < 0)
return 0;
if (a < 256)
return a;
return 255;
}
template<RecursiveFilter::Order order>
inline float ForwardFilter(float in_n_1,
float in_n,
float in_n1,
const std::vector<float>& w,
int n,
const float* b) {
switch (order) {
case RecursiveFilter::FUNCTION:
return b[0] * in_n + b[1] * w[n-1] + b[2] * w[n-2] + b[3] * w[n-3];
case RecursiveFilter::FIRST_DERIVATIVE:
return b[0] * 0.5f * (in_n1 - in_n_1) +
b[1] * w[n-1] + b[2] * w[n-2] + b[3] * w[n-3];
case RecursiveFilter::SECOND_DERIVATIVE:
return b[0] * (in_n - in_n_1) +
b[1] * w[n-1] + b[2] * w[n-2] + b[3] * w[n-3];
}
NOTREACHED();
return 0.0f;
}
template<RecursiveFilter::Order order>
inline float BackwardFilter(const std::vector<float>& out,
int n,
float w_n,
float w_n1,
const float* b) {
switch (order) {
case RecursiveFilter::FUNCTION:
case RecursiveFilter::FIRST_DERIVATIVE:
return b[0] * w_n +
b[1] * out[n + 1] + b[2] * out[n + 2] + b[3] * out[n + 3];
case RecursiveFilter::SECOND_DERIVATIVE:
return b[0] * (w_n1 - w_n) +
b[1] * out[n + 1] + b[2] * out[n + 2] + b[3] * out[n + 3];
}
NOTREACHED();
return 0.0f;
}
template<RecursiveFilter::Order order, bool absolute_values>
unsigned char SingleChannelRecursiveFilter(
const unsigned char* const source_data,
int source_pixel_stride,
int source_row_stride,
int row_width,
int row_count,
unsigned char* const output,
int output_pixel_stride,
int output_row_stride,
const float* b) {
const int intermediate_buffer_size = row_width + 6;
std::vector<float> w(intermediate_buffer_size);
const unsigned char* in = source_data;
unsigned char* out = output;
unsigned char max_output = 0;
for (int r = 0; r < row_count;
++r, in += source_row_stride, out += output_row_stride) {
// Compute forward filter.
// First initialize start of the w (temporary) vector.
if (order == RecursiveFilter::FUNCTION)
w[0] = w[1] = w[2] = in[0];
else
w[0] = w[1] = w[2] = 0.0f;
// Note that special-casing of w[3] is needed because of derivatives.
w[3] = ForwardFilter<order>(
in[0], in[0], in[source_pixel_stride], w, 3, b);
int n = 4;
int c = 1;
int byte_index = source_pixel_stride;
for (; c < row_width - 1; ++c, ++n, byte_index += source_pixel_stride) {
w[n] = ForwardFilter<order>(in[byte_index - source_pixel_stride],
in[byte_index],
in[byte_index + source_pixel_stride],
w, n, b);
}
// The value of w corresponding to the last image pixel needs to be computed
// separately, again because of derivatives.
w[n] = ForwardFilter<order>(in[byte_index - source_pixel_stride],
in[byte_index],
in[byte_index],
w, n, b);
// Now three trailing bytes set to the same value as current w[n].
w[n + 1] = w[n];
w[n + 2] = w[n];
w[n + 3] = w[n];
// Now apply the back filter.
float w_n1 = w[n + 1];
int output_index = (row_width - 1) * output_pixel_stride;
for (; c >= 0; output_index -= output_pixel_stride, --c, --n) {
float w_n = BackwardFilter<order>(w, n, w[n], w_n1, b);
w_n1 = w[n];
w[n] = w_n;
out[output_index] = FloatTo8<absolute_values>(w_n);
max_output = std::max(max_output, out[output_index]);
}
}
return max_output;
}
unsigned char SingleChannelRecursiveFilter(
const unsigned char* const source_data,
int source_pixel_stride,
int source_row_stride,
int row_width,
int row_count,
unsigned char* const output,
int output_pixel_stride,
int output_row_stride,
const float* b,
RecursiveFilter::Order order,
bool absolute_values) {
if (absolute_values) {
switch (order) {
case RecursiveFilter::FUNCTION:
return SingleChannelRecursiveFilter<RecursiveFilter::FUNCTION, true>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::FIRST_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::FIRST_DERIVATIVE, true>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::SECOND_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::SECOND_DERIVATIVE, true>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
}
} else {
switch (order) {
case RecursiveFilter::FUNCTION:
return SingleChannelRecursiveFilter<RecursiveFilter::FUNCTION, false>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::FIRST_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::FIRST_DERIVATIVE, false>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::SECOND_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::SECOND_DERIVATIVE, false>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
}
}
NOTREACHED();
return 0;
}
}
float RecursiveFilter::qFromSigma(float sigma) {
DCHECK_GE(sigma, 0.5f);
if (sigma <= 2.5f)
return 3.97156f - 4.14554f * std::sqrt(1.0f - 0.26891f * sigma);
return 0.98711f * sigma - 0.96330f;
}
void RecursiveFilter::computeCoefficients(float q, float b[4]) {
b[0] = 1.57825f + 2.44413f * q + 1.4281f * q * q + 0.422205f * q * q * q;
b[1] = 2.4413f * q + 2.85619f * q * q + 1.26661f * q * q * q;
b[2] = - 1.4281f * q * q - 1.26661f * q * q * q;
b[3] = 0.422205f * q * q * q;
// The above is exactly like in the paper. To cut down on computations,
// we can fix up these numbers a bit now.
float b_norm = 1.0f - (b[1] + b[2] + b[3]) / b[0];
b[1] /= b[0];
b[2] /= b[0];
b[3] /= b[0];
b[0] = b_norm;
}
RecursiveFilter::RecursiveFilter(float sigma, Order order)
: order_(order), q_(qFromSigma(sigma)) {
computeCoefficients(q_, b_);
}
unsigned char SingleChannelRecursiveGaussianX(const unsigned char* source_data,
int source_byte_row_stride,
int input_channel_index,
int input_channel_count,
const RecursiveFilter& filter,
const SkISize& image_size,
unsigned char* output,
int output_byte_row_stride,
int output_channel_index,
int output_channel_count,
bool absolute_values) {
return SingleChannelRecursiveFilter(source_data + input_channel_index,
input_channel_count,
source_byte_row_stride,
image_size.width(),
image_size.height(),
output + output_channel_index,
output_channel_count,
output_byte_row_stride,
filter.b(),
filter.order(),
absolute_values);
}
unsigned char SingleChannelRecursiveGaussianY(const unsigned char* source_data,
int source_byte_row_stride,
int input_channel_index,
int input_channel_count,
const RecursiveFilter& filter,
const SkISize& image_size,
unsigned char* output,
int output_byte_row_stride,
int output_channel_index,
int output_channel_count,
bool absolute_values) {
return SingleChannelRecursiveFilter(source_data + input_channel_index,
source_byte_row_stride,
input_channel_count,
image_size.height(),
image_size.width(),
output + output_channel_index,
output_byte_row_stride,
output_channel_count,
filter.b(),
filter.order(),
absolute_values);
}
} // namespace skia
|