summaryrefslogtreecommitdiffstats
path: root/skia/ext/recursive_gaussian_convolution_unittest.cc
blob: 9fe386b7c5647357ec12da49a56b789fdc6958b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <functional>
#include <numeric>
#include <vector>

#include "base/basictypes.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/time/time.h"
#include "skia/ext/convolver.h"
#include "skia/ext/recursive_gaussian_convolution.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkPoint.h"
#include "third_party/skia/include/core/SkRect.h"

namespace {

int ComputeRowStride(int width, int channel_count, int stride_slack) {
  return width * channel_count + stride_slack;
}

SkIPoint MakeImpulseImage(std::vector<unsigned char>* image,
                          int width,
                          int height,
                          int channel_index,
                          int channel_count,
                          int stride_slack) {
  const int src_row_stride = ComputeRowStride(
      width, channel_count, stride_slack);
  const int src_byte_count = src_row_stride * height;
  const int signal_x = width / 2;
  const int signal_y = height / 2;

  image->resize(src_byte_count, 0);
  const int non_zero_pixel_index =
      signal_y * src_row_stride + signal_x * channel_count + channel_index;
  (*image)[non_zero_pixel_index] = 255;
  return SkIPoint::Make(signal_x, signal_y);
}

SkIRect MakeBoxImage(std::vector<unsigned char>* image,
                     int width,
                     int height,
                     int channel_index,
                     int channel_count,
                     int stride_slack,
                     int box_width,
                     int box_height,
                     unsigned char value) {
  const int src_row_stride = ComputeRowStride(
      width, channel_count, stride_slack);
  const int src_byte_count = src_row_stride * height;
  const SkIRect box = SkIRect::MakeXYWH((width - box_width) / 2,
                                        (height - box_height) / 2,
                                        box_width, box_height);

  image->resize(src_byte_count, 0);
  for (int y = box.top(); y < box.bottom(); ++y) {
    for (int x = box.left(); x < box.right(); ++x)
      (*image)[y * src_row_stride + x * channel_count + channel_index] = value;
  }

  return box;
}

int ComputeBoxSum(const std::vector<unsigned char>& image,
                  const SkIRect& box,
                  int image_width) {
  // Compute the sum of all pixels in the box. Assume byte stride 1 and row
  // stride same as image_width.
  int sum = 0;
  for (int y = box.top(); y < box.bottom(); ++y) {
    for (int x = box.left(); x < box.right(); ++x)
      sum += image[y * image_width + x];
  }

  return sum;
}

}  // namespace

namespace skia {

TEST(RecursiveGaussian, SmoothingMethodComparison) {
  static const int kImgWidth = 512;
  static const int kImgHeight = 220;
  static const int kChannelIndex = 3;
  static const int kChannelCount = 3;
  static const int kStrideSlack = 22;

  std::vector<unsigned char> input;
  SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
  MakeImpulseImage(
      &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
      kStrideSlack);

  // Destination will be a single channel image with stide matching width.
  const int dest_row_stride = kImgWidth;
  const int dest_byte_count = dest_row_stride * kImgHeight;
  std::vector<unsigned char> intermediate(dest_byte_count);
  std::vector<unsigned char> intermediate2(dest_byte_count);
  std::vector<unsigned char> control(dest_byte_count);
  std::vector<unsigned char> output(dest_byte_count);

  const int src_row_stride = ComputeRowStride(
      kImgWidth, kChannelCount, kStrideSlack);

  const float kernel_sigma = 2.5f;
  ConvolutionFilter1D filter;
  SetUpGaussianConvolutionKernel(&filter, kernel_sigma, false);
  // Process the control image.
  SingleChannelConvolveX1D(&input[0], src_row_stride,
                           kChannelIndex, kChannelCount,
                           filter, image_size,
                           &intermediate[0], dest_row_stride, 0, 1, false);
  SingleChannelConvolveY1D(&intermediate[0], dest_row_stride, 0, 1,
                           filter, image_size,
                           &control[0], dest_row_stride, 0, 1, false);

  // Now try the same using the other method.
  RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION);
  SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &intermediate2[0], dest_row_stride,
                                  0, 1, false);
  SingleChannelRecursiveGaussianX(&intermediate2[0], dest_row_stride, 0, 1,
                                  recursive_filter, image_size,
                                  &output[0], dest_row_stride, 0, 1, false);

  // We cannot expect the results to be really the same. In particular,
  // the standard implementation is computed in completely fixed-point, while
  // recursive is done in floating point and squeezed back into char*. On top
  // of that, its characteristics are a bit different (consult the paper).
  EXPECT_NEAR(std::accumulate(intermediate.begin(), intermediate.end(), 0),
              std::accumulate(intermediate2.begin(), intermediate2.end(), 0),
              50);
  int difference_count = 0;
  std::vector<unsigned char>::const_iterator i1, i2;
  for (i1 = control.begin(), i2 = output.begin();
       i1 != control.end(); ++i1, ++i2) {
    if ((*i1 != 0) != (*i2 != 0))
      difference_count++;
  }

  EXPECT_LE(difference_count, 44);  // 44 is 2 * PI * r (r == 7, spot size).
}

TEST(RecursiveGaussian, SmoothingImpulse) {
  static const int kImgWidth = 200;
  static const int kImgHeight = 300;
  static const int kChannelIndex = 3;
  static const int kChannelCount = 3;
  static const int kStrideSlack = 22;

  std::vector<unsigned char> input;
  SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
  const SkIPoint centre_point = MakeImpulseImage(
      &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
      kStrideSlack);

  // Destination will be a single channel image with stide matching width.
  const int dest_row_stride = kImgWidth;
  const int dest_byte_count = dest_row_stride * kImgHeight;
  std::vector<unsigned char> intermediate(dest_byte_count);
  std::vector<unsigned char> output(dest_byte_count);

  const int src_row_stride = ComputeRowStride(
      kImgWidth, kChannelCount, kStrideSlack);

  const float kernel_sigma = 5.0f;
  RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION);
  SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &intermediate[0], dest_row_stride,
                                  0, 1, false);
  SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1,
                                  recursive_filter, image_size,
                                  &output[0], dest_row_stride, 0, 1, false);

  // Check we got the expected impulse response.
  const int cx = centre_point.x();
  const int cy = centre_point.y();
  unsigned char value_x = output[dest_row_stride * cy + cx];
  unsigned char value_y = value_x;
  EXPECT_GT(value_x, 0);
  for (int offset = 0;
       offset < std::min(kImgWidth, kImgHeight) && (value_y > 0 || value_x > 0);
       ++offset) {
    // Symmetricity and monotonicity along X.
    EXPECT_EQ(output[dest_row_stride * cy + cx - offset],
              output[dest_row_stride * cy + cx + offset]);
    EXPECT_LE(output[dest_row_stride * cy + cx - offset], value_x);
    value_x = output[dest_row_stride * cy + cx - offset];

    // Symmetricity and monotonicity along Y.
    EXPECT_EQ(output[dest_row_stride * (cy - offset) + cx],
              output[dest_row_stride * (cy + offset) + cx]);
    EXPECT_LE(output[dest_row_stride * (cy  - offset) + cx], value_y);
    value_y = output[dest_row_stride * (cy - offset) + cx];

    // Symmetricity along X/Y (not really assured, but should be close).
    EXPECT_NEAR(value_x, value_y, 1);
  }

  // Smooth the inverse now.
  std::vector<unsigned char> output2(dest_byte_count);
  std::transform(input.begin(), input.end(), input.begin(),
                 std::bind1st(std::minus<unsigned char>(), 255U));
  SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &intermediate[0], dest_row_stride,
                                  0, 1, false);
  SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1,
                                  recursive_filter, image_size,
                                  &output2[0], dest_row_stride, 0, 1, false);
  // The image should be the reverse of output, but permitting for rounding
  // we will only claim that wherever output is 0, output2 should be 255.
  // There still can be differences at the edges of the object.
  std::vector<unsigned char>::const_iterator i1, i2;
  int difference_count = 0;
  for (i1 = output.begin(), i2 = output2.begin();
       i1 != output.end(); ++i1, ++i2) {
    // The line below checks (*i1 == 0 <==> *i2 == 255).
    if ((*i1 != 0 && *i2 == 255) && ! (*i1 == 0 && *i2 != 255))
      ++difference_count;
  }
  EXPECT_LE(difference_count, 8);
}

TEST(RecursiveGaussian, FirstDerivative) {
  static const int kImgWidth = 512;
  static const int kImgHeight = 1024;
  static const int kChannelIndex = 2;
  static const int kChannelCount = 4;
  static const int kStrideSlack = 22;
  static const int kBoxSize = 400;

  std::vector<unsigned char> input;
  const SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
  const SkIRect box =  MakeBoxImage(
      &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
      kStrideSlack, kBoxSize, kBoxSize, 200);

  // Destination will be a single channel image with stide matching width.
  const int dest_row_stride = kImgWidth;
  const int dest_byte_count = dest_row_stride * kImgHeight;
  std::vector<unsigned char> output_x(dest_byte_count);
  std::vector<unsigned char> output_y(dest_byte_count);
  std::vector<unsigned char> output(dest_byte_count);

  const int src_row_stride = ComputeRowStride(
      kImgWidth, kChannelCount, kStrideSlack);

  const float kernel_sigma = 3.0f;
  const int spread = 4 * kernel_sigma;
  RecursiveFilter recursive_filter(kernel_sigma,
                                   RecursiveFilter::FIRST_DERIVATIVE);
  SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &output_x[0], dest_row_stride,
                                  0, 1, true);
  SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &output_y[0], dest_row_stride,
                                  0, 1, true);

  // In test code we can assume adding the two up should do fine.
  std::vector<unsigned char>::const_iterator ix, iy;
  std::vector<unsigned char>::iterator target;
  for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin();
       target < output.end(); ++target, ++ix, ++iy) {
    *target = *ix + *iy;
  }

  SkIRect inflated_rect(box);
  inflated_rect.outset(spread, spread);
  SkIRect deflated_rect(box);
  deflated_rect.inset(spread, spread);

  int image_total = ComputeBoxSum(output,
                                  SkIRect::MakeWH(kImgWidth, kImgHeight),
                                  kImgWidth);
  int box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth);
  int box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth);
  EXPECT_EQ(box_deflated, 0);
  EXPECT_EQ(image_total, box_inflated);

  // Try inverted image. Behaviour should be very similar (modulo rounding).
  std::transform(input.begin(), input.end(), input.begin(),
                 std::bind1st(std::minus<unsigned char>(), 255U));
  SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &output_x[0], dest_row_stride,
                                  0, 1, true);
  SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &output_y[0], dest_row_stride,
                                  0, 1, true);

  for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin();
       target < output.end(); ++target, ++ix, ++iy) {
    *target = *ix + *iy;
  }

  image_total = ComputeBoxSum(output,
                              SkIRect::MakeWH(kImgWidth, kImgHeight),
                              kImgWidth);
  box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth);
  box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth);

  EXPECT_EQ(box_deflated, 0);
  EXPECT_EQ(image_total, box_inflated);
}

TEST(RecursiveGaussian, SecondDerivative) {
  static const int kImgWidth = 700;
  static const int kImgHeight = 500;
  static const int kChannelIndex = 0;
  static const int kChannelCount = 2;
  static const int kStrideSlack = 42;
  static const int kBoxSize = 200;

  std::vector<unsigned char> input;
  SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
  const SkIRect box = MakeBoxImage(
      &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
      kStrideSlack, kBoxSize, kBoxSize, 200);

  // Destination will be a single channel image with stide matching width.
  const int dest_row_stride = kImgWidth;
  const int dest_byte_count = dest_row_stride * kImgHeight;
  std::vector<unsigned char> output_x(dest_byte_count);
  std::vector<unsigned char> output_y(dest_byte_count);
  std::vector<unsigned char> output(dest_byte_count);

  const int src_row_stride = ComputeRowStride(
      kImgWidth, kChannelCount, kStrideSlack);

  const float kernel_sigma = 5.0f;
  const int spread = 8 * kernel_sigma;
  RecursiveFilter recursive_filter(kernel_sigma,
                                   RecursiveFilter::SECOND_DERIVATIVE);
  SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &output_x[0], dest_row_stride,
                                  0, 1, true);
  SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
                                  kChannelIndex, kChannelCount,
                                  recursive_filter, image_size,
                                  &output_y[0], dest_row_stride,
                                  0, 1, true);

  // In test code we can assume adding the two up should do fine.
  std::vector<unsigned char>::const_iterator ix, iy;
  std::vector<unsigned char>::iterator target;
  for (target = output.begin(),ix = output_x.begin(), iy = output_y.begin();
       target < output.end(); ++target, ++ix, ++iy) {
    *target = *ix + *iy;
  }

  int image_total = ComputeBoxSum(output,
                                  SkIRect::MakeWH(kImgWidth, kImgHeight),
                                  kImgWidth);
  int box_inflated = ComputeBoxSum(output,
                                   SkIRect::MakeLTRB(box.left() - spread,
                                                     box.top() - spread,
                                                     box.right() + spread,
                                                     box.bottom() + spread),
                                   kImgWidth);
  int box_deflated = ComputeBoxSum(output,
                                   SkIRect::MakeLTRB(box.left() + spread,
                                                     box.top() + spread,
                                                     box.right() - spread,
                                                     box.bottom() - spread),
                                   kImgWidth);
  // Since second derivative is not really used and implemented mostly
  // for the sake of completeness, we do not verify the detail (that dip
  // in the middle). But it is there.
  EXPECT_EQ(box_deflated, 0);
  EXPECT_EQ(image_total, box_inflated);
}

}  // namespace skia