1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
/*
* Copyright (C) 2006-2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkPathMeasure.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkTSearch.h"
// these must be 0,1,2 since they are in our 2-bit field
enum {
kLine_SegType,
kCloseLine_SegType,
kQuad_SegType,
kCubic_SegType
};
#define kMaxTValue 32767
static inline SkScalar tValue2Scalar(int t) {
SkASSERT((unsigned)t <= kMaxTValue);
#ifdef SK_SCALAR_IS_FLOAT
return t * 3.05185e-5f; // t / 32767
#else
return (t + (t >> 14)) << 1;
#endif
}
SkScalar SkPathMeasure::Segment::getScalarT() const {
return tValue2Scalar(fTValue);
}
const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) {
unsigned ptIndex = seg->fPtIndex;
do {
++seg;
} while (seg->fPtIndex == ptIndex);
return seg;
}
///////////////////////////////////////////////////////////////////////////////
static inline int tspan_big_enough(int tspan) {
SkASSERT((unsigned)tspan <= kMaxTValue);
return tspan >> 10;
}
#if 0
static inline bool tangents_too_curvy(const SkVector& tan0, SkVector& tan1) {
static const SkScalar kFlatEnoughTangentDotProd = SK_Scalar1 * 99 / 100;
SkASSERT(kFlatEnoughTangentDotProd > 0 &&
kFlatEnoughTangentDotProd < SK_Scalar1);
return SkPoint::DotProduct(tan0, tan1) < kFlatEnoughTangentDotProd;
}
#endif
// can't use tangents, since we need [0..1..................2] to be seen
// as definitely not a line (it is when drawn, but not parametrically)
// so we compare midpoints
#define CHEAP_DIST_LIMIT (SK_Scalar1/2) // just made this value up
static bool quad_too_curvy(const SkPoint pts[3]) {
// diff = (a/4 + b/2 + c/4) - (a/2 + c/2)
// diff = -a/4 + b/2 - c/4
SkScalar dx = SkScalarHalf(pts[1].fX) -
SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX));
SkScalar dy = SkScalarHalf(pts[1].fY) -
SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY));
SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy));
return dist > CHEAP_DIST_LIMIT;
}
static bool cheap_dist_exceeds_limit(const SkPoint& pt,
SkScalar x, SkScalar y) {
SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY));
// just made up the 1/2
return dist > CHEAP_DIST_LIMIT;
}
static bool cubic_too_curvy(const SkPoint pts[4]) {
return cheap_dist_exceeds_limit(pts[1],
SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3),
SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3))
||
cheap_dist_exceeds_limit(pts[2],
SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3),
SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3));
}
SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
SkScalar distance, int mint, int maxt, int ptIndex) {
if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) {
SkPoint tmp[5];
int halft = (mint + maxt) >> 1;
SkChopQuadAtHalf(pts, tmp);
distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex);
distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex);
} else {
SkScalar d = SkPoint::Distance(pts[0], pts[2]);
SkASSERT(d >= 0);
if (!SkScalarNearlyZero(d)) {
distance += d;
Segment* seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kQuad_SegType;
seg->fTValue = maxt;
}
}
return distance;
}
SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4],
SkScalar distance, int mint, int maxt, int ptIndex) {
if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) {
SkPoint tmp[7];
int halft = (mint + maxt) >> 1;
SkChopCubicAtHalf(pts, tmp);
distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex);
distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex);
} else {
SkScalar d = SkPoint::Distance(pts[0], pts[3]);
SkASSERT(d >= 0);
if (!SkScalarNearlyZero(d)) {
distance += d;
Segment* seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kCubic_SegType;
seg->fTValue = maxt;
}
}
return distance;
}
void SkPathMeasure::buildSegments() {
SkPoint pts[4];
int ptIndex = fFirstPtIndex;
SkScalar d, distance = 0;
bool isClosed = fForceClosed;
bool firstMoveTo = ptIndex < 0;
Segment* seg;
fSegments.reset();
for (;;) {
switch (fIter.next(pts)) {
case SkPath::kMove_Verb:
if (!firstMoveTo) {
goto DONE;
}
ptIndex += 1;
firstMoveTo = false;
break;
case SkPath::kLine_Verb:
d = SkPoint::Distance(pts[0], pts[1]);
SkASSERT(d >= 0);
if (!SkScalarNearlyZero(d)) {
distance += d;
seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = fIter.isCloseLine() ?
kCloseLine_SegType : kLine_SegType;
seg->fTValue = kMaxTValue;
}
ptIndex += !fIter.isCloseLine();
break;
case SkPath::kQuad_Verb:
distance = this->compute_quad_segs(pts, distance, 0,
kMaxTValue, ptIndex);
ptIndex += 2;
break;
case SkPath::kCubic_Verb:
distance = this->compute_cubic_segs(pts, distance, 0,
kMaxTValue, ptIndex);
ptIndex += 3;
break;
case SkPath::kClose_Verb:
isClosed = true;
break;
case SkPath::kDone_Verb:
goto DONE;
}
}
DONE:
fLength = distance;
fIsClosed = isClosed;
fFirstPtIndex = ptIndex + 1;
#ifdef SK_DEBUG
{
const Segment* seg = fSegments.begin();
const Segment* stop = fSegments.end();
unsigned ptIndex = 0;
SkScalar distance = 0;
while (seg < stop) {
SkASSERT(seg->fDistance > distance);
SkASSERT(seg->fPtIndex >= ptIndex);
SkASSERT(seg->fTValue > 0);
const Segment* s = seg;
while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex) {
SkASSERT(s[0].fType == s[1].fType);
SkASSERT(s[0].fTValue < s[1].fTValue);
s += 1;
}
distance = seg->fDistance;
ptIndex = seg->fPtIndex;
seg += 1;
}
// SkDebugf("\n");
}
#endif
}
// marked as a friend in SkPath.h
const SkPoint* sk_get_path_points(const SkPath& path, int index) {
return &path.fPts[index];
}
static void compute_pos_tan(const SkPath& path, int firstPtIndex, int ptIndex,
int segType, SkScalar t, SkPoint* pos, SkVector* tangent) {
const SkPoint* pts = sk_get_path_points(path, ptIndex);
switch (segType) {
case kLine_SegType:
case kCloseLine_SegType: {
const SkPoint* endp = (segType == kLine_SegType) ?
&pts[1] :
sk_get_path_points(path, firstPtIndex);
if (pos) {
pos->set(SkScalarInterp(pts[0].fX, endp->fX, t),
SkScalarInterp(pts[0].fY, endp->fY, t));
}
if (tangent) {
tangent->setNormalize(endp->fX - pts[0].fX, endp->fY - pts[0].fY);
}
break;
}
case kQuad_SegType:
SkEvalQuadAt(pts, t, pos, tangent);
if (tangent) {
tangent->normalize();
}
break;
case kCubic_SegType:
SkEvalCubicAt(pts, t, pos, tangent, NULL);
if (tangent) {
tangent->normalize();
}
break;
default:
SkASSERT(!"unknown segType");
}
}
static void seg_to(const SkPath& src, int firstPtIndex, int ptIndex,
int segType, SkScalar startT, SkScalar stopT, SkPath* dst) {
SkASSERT(startT >= 0 && startT <= SK_Scalar1);
SkASSERT(stopT >= 0 && stopT <= SK_Scalar1);
SkASSERT(startT <= stopT);
if (SkScalarNearlyZero(stopT - startT)) {
return;
}
const SkPoint* pts = sk_get_path_points(src, ptIndex);
SkPoint tmp0[7], tmp1[7];
switch (segType) {
case kLine_SegType:
case kCloseLine_SegType: {
const SkPoint* endp = (segType == kLine_SegType) ?
&pts[1] :
sk_get_path_points(src, firstPtIndex);
if (stopT == kMaxTValue) {
dst->lineTo(*endp);
} else {
dst->lineTo(SkScalarInterp(pts[0].fX, endp->fX, stopT),
SkScalarInterp(pts[0].fY, endp->fY, stopT));
}
break;
}
case kQuad_SegType:
if (startT == 0) {
if (stopT == SK_Scalar1) {
dst->quadTo(pts[1], pts[2]);
} else {
SkChopQuadAt(pts, tmp0, stopT);
dst->quadTo(tmp0[1], tmp0[2]);
}
} else {
SkChopQuadAt(pts, tmp0, startT);
if (stopT == SK_Scalar1) {
dst->quadTo(tmp0[3], tmp0[4]);
} else {
SkChopQuadAt(&tmp0[2], tmp1, SkScalarDiv(stopT - startT,
SK_Scalar1 - startT));
dst->quadTo(tmp1[1], tmp1[2]);
}
}
break;
case kCubic_SegType:
if (startT == 0) {
if (stopT == SK_Scalar1) {
dst->cubicTo(pts[1], pts[2], pts[3]);
} else {
SkChopCubicAt(pts, tmp0, stopT);
dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]);
}
} else {
SkChopCubicAt(pts, tmp0, startT);
if (stopT == SK_Scalar1) {
dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]);
} else {
SkChopCubicAt(&tmp0[3], tmp1, SkScalarDiv(stopT - startT,
SK_Scalar1 - startT));
dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]);
}
}
break;
default:
SkASSERT(!"unknown segType");
sk_throw();
}
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
SkPathMeasure::SkPathMeasure() {
fPath = NULL;
fLength = -1; // signal we need to compute it
fForceClosed = false;
fFirstPtIndex = -1;
}
SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed) {
fPath = &path;
fLength = -1; // signal we need to compute it
fForceClosed = forceClosed;
fFirstPtIndex = -1;
fIter.setPath(path, forceClosed);
}
SkPathMeasure::~SkPathMeasure() {}
/** Assign a new path, or null to have none.
*/
void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) {
fPath = path;
fLength = -1; // signal we need to compute it
fForceClosed = forceClosed;
fFirstPtIndex = -1;
if (path) {
fIter.setPath(*path, forceClosed);
}
fSegments.reset();
}
SkScalar SkPathMeasure::getLength() {
if (fPath == NULL) {
return 0;
}
if (fLength < 0) {
this->buildSegments();
}
SkASSERT(fLength >= 0);
return fLength;
}
const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment(
SkScalar distance, SkScalar* t) {
SkDEBUGCODE(SkScalar length = ) this->getLength();
SkASSERT(distance >= 0 && distance <= length);
const Segment* seg = fSegments.begin();
int count = fSegments.count();
int index = SkTSearch<SkScalar>(&seg->fDistance, count, distance,
sizeof(Segment));
// don't care if we hit an exact match or not, so we xor index if it is negative
index ^= (index >> 31);
seg = &seg[index];
// now interpolate t-values with the prev segment (if possible)
SkScalar startT = 0, startD = 0;
// check if the prev segment is legal, and references the same set of points
if (index > 0) {
startD = seg[-1].fDistance;
if (seg[-1].fPtIndex == seg->fPtIndex) {
SkASSERT(seg[-1].fType == seg->fType);
startT = seg[-1].getScalarT();
}
}
SkASSERT(seg->getScalarT() > startT);
SkASSERT(distance >= startD);
SkASSERT(seg->fDistance > startD);
*t = startT + SkScalarMulDiv(seg->getScalarT() - startT,
distance - startD,
seg->fDistance - startD);
return seg;
}
bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos,
SkVector* tangent) {
SkASSERT(fPath);
if (fPath == NULL) {
EMPTY:
return false;
}
SkScalar length = this->getLength(); // call this to force computing it
int count = fSegments.count();
if (count == 0 || length == 0) {
goto EMPTY;
}
// pin the distance to a legal range
if (distance < 0) {
distance = 0;
} else if (distance > length) {
distance = length;
}
SkScalar t;
const Segment* seg = this->distanceToSegment(distance, &t);
compute_pos_tan(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
t, pos, tangent);
return true;
}
bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix,
MatrixFlags flags) {
SkPoint position;
SkVector tangent;
if (this->getPosTan(distance, &position, &tangent)) {
if (matrix) {
if (flags & kGetTangent_MatrixFlag) {
matrix->setSinCos(tangent.fY, tangent.fX, 0, 0);
} else {
matrix->reset();
}
if (flags & kGetPosition_MatrixFlag) {
matrix->postTranslate(position.fX, position.fY);
}
}
return true;
}
return false;
}
bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst,
bool startWithMoveTo) {
SkASSERT(dst);
SkScalar length = this->getLength(); // ensure we have built our segments
if (startD < 0) {
startD = 0;
}
if (stopD > length) {
stopD = length;
}
if (startD >= stopD) {
return false;
}
SkPoint p;
SkScalar startT, stopT;
const Segment* seg = this->distanceToSegment(startD, &startT);
const Segment* stopSeg = this->distanceToSegment(stopD, &stopT);
SkASSERT(seg <= stopSeg);
if (startWithMoveTo) {
compute_pos_tan(*fPath, fSegments[0].fPtIndex, seg->fPtIndex,
seg->fType, startT, &p, NULL);
dst->moveTo(p);
}
if (seg->fPtIndex == stopSeg->fPtIndex) {
seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
startT, stopT, dst);
} else {
do {
seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
startT, SK_Scalar1, dst);
seg = SkPathMeasure::NextSegment(seg);
startT = 0;
} while (seg->fPtIndex < stopSeg->fPtIndex);
seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType,
0, stopT, dst);
}
return true;
}
bool SkPathMeasure::isClosed() {
(void)this->getLength();
return fIsClosed;
}
/** Move to the next contour in the path. Return true if one exists, or false if
we're done with the path.
*/
bool SkPathMeasure::nextContour() {
fLength = -1;
return this->getLength() > 0;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkPathMeasure::dump() {
SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count());
for (int i = 0; i < fSegments.count(); i++) {
const Segment* seg = &fSegments[i];
SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n",
i, seg->fDistance, seg->fPtIndex, seg->getScalarT(),
seg->fType);
}
}
void SkPathMeasure::UnitTest() {
#ifdef SK_SUPPORT_UNITTEST
SkPath path;
path.moveTo(0, 0);
path.lineTo(SK_Scalar1, 0);
path.lineTo(SK_Scalar1, SK_Scalar1);
path.lineTo(0, SK_Scalar1);
SkPathMeasure meas(path, true);
SkScalar length = meas.getLength();
SkASSERT(length == SK_Scalar1*4);
path.reset();
path.moveTo(0, 0);
path.lineTo(SK_Scalar1*3, SK_Scalar1*4);
meas.setPath(&path, false);
length = meas.getLength();
SkASSERT(length == SK_Scalar1*5);
path.reset();
path.addCircle(0, 0, SK_Scalar1);
meas.setPath(&path, true);
length = meas.getLength();
SkDebugf("circle arc-length = %g\n", length);
for (int i = 0; i < 8; i++) {
SkScalar d = length * i / 8;
SkPoint p;
SkVector v;
meas.getPosTan(d, &p, &v);
SkDebugf("circle arc-length=%g, pos[%g %g] tan[%g %g]\n",
d, p.fX, p.fY, v.fX, v.fY);
}
#endif
}
#endif
|