summaryrefslogtreecommitdiffstats
path: root/skia/sgl/SkScan_Path.cpp
blob: 8b589916d615e384730a17d81d1488763822c9f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/* libs/graphics/sgl/SkScan_Path.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License"); 
** you may not use this file except in compliance with the License. 
** You may obtain a copy of the License at 
**
**     http://www.apache.org/licenses/LICENSE-2.0 
**
** Unless required by applicable law or agreed to in writing, software 
** distributed under the License is distributed on an "AS IS" BASIS, 
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
** See the License for the specific language governing permissions and 
** limitations under the License.
*/

#include "SkScanPriv.h"
#include "SkBlitter.h"
#include "SkEdge.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkRegion.h"
#include "SkTemplates.h"

#define kEDGE_HEAD_Y    SK_MinS32
#define kEDGE_TAIL_Y    SK_MaxS32

#ifdef SK_DEBUG
    static void validate_sort(const SkEdge* edge)
    {
        int y = kEDGE_HEAD_Y;

        while (edge->fFirstY != SK_MaxS32)
        {
            edge->validate();
            SkASSERT(y <= edge->fFirstY);

            y = edge->fFirstY;
            edge = edge->fNext;
        }
    }
#else
    #define validate_sort(edge)
#endif

static inline void remove_edge(SkEdge* edge)
{
    edge->fPrev->fNext = edge->fNext;
    edge->fNext->fPrev = edge->fPrev;
}

static inline void swap_edges(SkEdge* prev, SkEdge* next)
{
    SkASSERT(prev->fNext == next && next->fPrev == prev);

    // remove prev from the list
    prev->fPrev->fNext = next;
    next->fPrev = prev->fPrev;

    // insert prev after next
    prev->fNext = next->fNext;
    next->fNext->fPrev = prev;
    next->fNext = prev;
    prev->fPrev = next;
}

static void backward_insert_edge_based_on_x(SkEdge* edge SkDECLAREPARAM(int, curr_y))
{
    SkFixed x = edge->fX;

    for (;;)
    {
        SkEdge* prev = edge->fPrev;
        
        // add 1 to curr_y since we may have added new edges (built from curves)
        // that start on the next scanline
        SkASSERT(prev && prev->fFirstY <= curr_y + 1);

        if (prev->fX <= x)
            break;

        swap_edges(prev, edge);
    }
}

static void insert_new_edges(SkEdge* newEdge, int curr_y)
{
    SkASSERT(newEdge->fFirstY >= curr_y);

    while (newEdge->fFirstY == curr_y)
    {
        SkEdge* next = newEdge->fNext;
        backward_insert_edge_based_on_x(newEdge  SkPARAM(curr_y));
        newEdge = next;
    }
}

#ifdef SK_DEBUG
static void validate_edges_for_y(const SkEdge* edge, int curr_y)
{
    while (edge->fFirstY <= curr_y)
    {
        SkASSERT(edge->fPrev && edge->fNext);
        SkASSERT(edge->fPrev->fNext == edge);
        SkASSERT(edge->fNext->fPrev == edge);
        SkASSERT(edge->fFirstY <= edge->fLastY);

        SkASSERT(edge->fPrev->fX <= edge->fX);
        edge = edge->fNext;
    }
}
#else
    #define validate_edges_for_y(edge, curr_y)
#endif

#if defined _WIN32 && _MSC_VER >= 1300  // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif

typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline);
#define PREPOST_START   true
#define PREPOST_END     false

static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType,
                       SkBlitter* blitter, int stop_y, PrePostProc proc)
{
    validate_sort(prevHead->fNext);

    int curr_y = prevHead->fNext->fFirstY;
    // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
    int windingMask = (fillType & 1) ? 1 : -1;

    for (;;)
    {
        int     w = 0;
        int     left SK_INIT_TO_AVOID_WARNING;
        bool    in_interval = false;
        SkEdge* currE = prevHead->fNext;
        SkFixed prevX = prevHead->fX;

        validate_edges_for_y(currE, curr_y);
        
        if (proc) {
            proc(blitter, curr_y, PREPOST_START);    // pre-proc
        }
        
        while (currE->fFirstY <= curr_y)
        {
            SkASSERT(currE->fLastY >= curr_y);

            int x = (currE->fX + SK_Fixed1/2) >> 16;
            w += currE->fWinding;
            if ((w & windingMask) == 0) // we finished an interval
            {
                SkASSERT(in_interval);
                int width = x - left;
                SkASSERT(width >= 0);
                if (width)
                    blitter->blitH(left, curr_y, width);
                in_interval = false;
            }
            else if (!in_interval)
            {
                left = x;
                in_interval = true;
            }

            SkEdge* next = currE->fNext;
            SkFixed newX;

            if (currE->fLastY == curr_y)    // are we done with this edge?
            {
                if (currE->fCurveCount < 0)
                {
                    if (((SkCubicEdge*)currE)->updateCubic())
                    {
                        SkASSERT(currE->fFirstY == curr_y + 1);
                        
                        newX = currE->fX;
                        goto NEXT_X;
                    }
                }
                else if (currE->fCurveCount > 0)
                {
                    if (((SkQuadraticEdge*)currE)->updateQuadratic())
                    {
                        newX = currE->fX;
                        goto NEXT_X;
                    }
                }
                remove_edge(currE);
            }
            else
            {
                SkASSERT(currE->fLastY > curr_y);
                newX = currE->fX + currE->fDX;
                currE->fX = newX;
            NEXT_X:
                if (newX < prevX)   // ripple currE backwards until it is x-sorted
                    backward_insert_edge_based_on_x(currE  SkPARAM(curr_y));
                else
                    prevX = newX;
            }
            currE = next;
            SkASSERT(currE);
        }
        
        if (proc) {
            proc(blitter, curr_y, PREPOST_END);    // post-proc
        }

        curr_y += 1;
        if (curr_y >= stop_y)
            break;

        // now currE points to the first edge with a Yint larger than curr_y
        insert_new_edges(currE, curr_y);
    }
}

///////////////////////////////////////////////////////////////////////////////

// this guy overrides blitH, and will call its proxy blitter with the inverse
// of the spans it is given (clipped to the left/right of the cliprect)
//
// used to implement inverse filltypes on paths
//
class InverseBlitter : public SkBlitter {
public:
    void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) {
        fBlitter = blitter;
        fFirstX = clip.fLeft << shift;
        fLastX = clip.fRight << shift;
    }
    void prepost(int y, bool isStart) {
        if (isStart) {
            fPrevX = fFirstX;
        } else {
            int invWidth = fLastX - fPrevX;
            if (invWidth > 0) {
                fBlitter->blitH(fPrevX, y, invWidth);
            }
        }
    }

    // overrides
    virtual void blitH(int x, int y, int width) {
        int invWidth = x - fPrevX;
        if (invWidth > 0) {
            fBlitter->blitH(fPrevX, y, invWidth);
        }
        fPrevX = x + width;
    }
    
    // we do not expect to get called with these entrypoints
    virtual void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) {
        SkASSERT(!"blitAntiH unexpected");
    }
    virtual void blitV(int x, int y, int height, SkAlpha alpha) {
        SkASSERT(!"blitV unexpected");
    }
    virtual void blitRect(int x, int y, int width, int height) {
        SkASSERT(!"blitRect unexpected");
    }
    virtual void blitMask(const SkMask&, const SkIRect& clip) {
        SkASSERT(!"blitMask unexpected");
    }
    virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) {
        SkASSERT(!"justAnOpaqueColor unexpected");
        return NULL;
    }
    
private:
    SkBlitter*  fBlitter;
    int         fFirstX, fLastX, fPrevX;
};

static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) {
    ((InverseBlitter*)blitter)->prepost(y, isStart);
}

///////////////////////////////////////////////////////////////////////////////

#if defined _WIN32 && _MSC_VER >= 1300
#pragma warning ( pop )
#endif

/*  Our line edge relies on the maximum span being <= 512, so that it can
    use FDot6 and keep the dx,dy in 16bits (for much faster slope divide).
    This function returns true if the specified line is too big.
*/
static inline bool line_too_big(const SkPoint pts[2])
{
    SkScalar dx = pts[1].fX - pts[0].fX;
    SkScalar dy = pts[1].fY - pts[0].fY;

    return  SkScalarAbs(dx) > SkIntToScalar(511) ||
            SkScalarAbs(dy) > SkIntToScalar(511);
}

static int build_edges(SkEdge edge[], const SkPath& path,
                       const SkIRect* clipRect, SkEdge* list[], int shiftUp) {
    SkEdge**        start = list;
    SkPath::Iter    iter(path, true);
    SkPoint         pts[4];
    SkPath::Verb    verb;

    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kLine_Verb:
                if (edge->setLine(pts[0], pts[1], clipRect, shiftUp)) {
                    *list++ = edge;
                    edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
                }
                break;
            case SkPath::kQuad_Verb: {
                SkPoint tmp[5];
                SkPoint* p = tmp;
                int     count = SkChopQuadAtYExtrema(pts, tmp);

                do {
                    if (((SkQuadraticEdge*)edge)->setQuadratic(p, clipRect,
                                                               shiftUp))
                    {
                        *list++ = edge;
                        edge = (SkEdge*)((char*)edge + sizeof(SkQuadraticEdge));
                    }
                    p += 2;
                } while (--count >= 0);
                break;
            }
            case SkPath::kCubic_Verb: {
                SkPoint tmp[10];
                SkPoint* p = tmp;
                int     count = SkChopCubicAtYExtrema(pts, tmp);                
                SkASSERT(count >= 0 && count <= 2);

                do {
                    if (((SkCubicEdge*)edge)->setCubic(p, clipRect, shiftUp))
                    {
                        *list++ = edge;
                        edge = (SkEdge*)((char*)edge + sizeof(SkCubicEdge));
                    }
                    p += 3;
                } while (--count >= 0);
                break;
            }
        default:
            break;
        }
    }
    return (int)(list - start);
}

extern "C" {
    static int edge_compare(const void* a, const void* b)
    {
        const SkEdge* edgea = *(const SkEdge**)a;
        const SkEdge* edgeb = *(const SkEdge**)b;

        int valuea = edgea->fFirstY;
        int valueb = edgeb->fFirstY;

        if (valuea == valueb)
        {
            valuea = edgea->fX;
            valueb = edgeb->fX;
        }
        return valuea - valueb;
    }
}

static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last)
{
    qsort(list, count, sizeof(SkEdge*), edge_compare);

    // now make the edges linked in sorted order
    for (int i = 1; i < count; i++)
    {
        list[i - 1]->fNext = list[i];
        list[i]->fPrev = list[i - 1];
    }

    *last = list[count - 1];
    return list[0];
}

/* 'quick' computation of the max sized needed to allocated for
    our edgelist.
*/
static int worst_case_edge_count(const SkPath& path, size_t* storage)
{
    size_t  size = 0;
    int     edgeCount = 0;

    SkPath::Iter    iter(path, true);
    SkPath::Verb    verb;

    while ((verb = iter.next(NULL)) != SkPath::kDone_Verb)
    {
        switch (verb) {
        case SkPath::kLine_Verb:
            edgeCount += 1;
            size += sizeof(SkQuadraticEdge);    // treat line like Quad (in case its > 512)
            break;
        case SkPath::kQuad_Verb:
            edgeCount += 2;                     // might need 2 edges when we chop on Y extrema
            size += 2 * sizeof(SkQuadraticEdge);
            break;
        case SkPath::kCubic_Verb:
            edgeCount += 3;                     // might need 3 edges when we chop on Y extrema
            size += 3 * sizeof(SkCubicEdge);
            break;
        default:
            break;
        }
    }

    SkASSERT(storage);
    *storage = size;
    return edgeCount;
}

/* Much faster than worst_case_edge_count, but over estimates even more
*/
static int cheap_worst_case_edge_count(const SkPath& path, size_t* storage)
{
    int ptCount = path.getPoints(NULL, 0);
    int edgeCount = ptCount;
    *storage = edgeCount * sizeof(SkCubicEdge);
    return edgeCount;
}

// clipRect may be null, even though we always have a clip. This indicates that
// the path is contained in the clip, and so we can ignore it during the blit
//
// clipRect (if no null) has already been shifted up
//
void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitter,
                  int stop_y, int shiftEdgesUp, const SkRegion& clipRgn)
{
    SkASSERT(&path && blitter);

    size_t  size;
    int     maxCount = cheap_worst_case_edge_count(path, &size);

#ifdef SK_DEBUG
    {
        size_t  size2;
        int     maxCount2 = worst_case_edge_count(path, &size2);
        
        SkASSERT(maxCount >= maxCount2 && size >= size2);
    }
#endif

    SkAutoMalloc    memory(maxCount * sizeof(SkEdge*) + size);
    SkEdge**        list = (SkEdge**)memory.get();
    SkEdge*         edge = (SkEdge*)(list + maxCount);
    int             count = build_edges(edge, path, clipRect, list, shiftEdgesUp);
    SkEdge          headEdge, tailEdge, *last;

    SkASSERT(count <= maxCount);
    if (count == 0) {
        return;
    }
    SkASSERT(count > 1);

    // this returns the first and last edge after they're sorted into a dlink list
    edge = sort_edges(list, count, &last);

    headEdge.fPrev = NULL;
    headEdge.fNext = edge;
    headEdge.fFirstY = kEDGE_HEAD_Y;
    headEdge.fX = SK_MinS32;
    edge->fPrev = &headEdge;

    tailEdge.fPrev = last;
    tailEdge.fNext = NULL;
    tailEdge.fFirstY = kEDGE_TAIL_Y;
    last->fNext = &tailEdge;

    // now edge is the head of the sorted linklist

    stop_y <<= shiftEdgesUp;
    if (clipRect && stop_y > clipRect->fBottom) {
        stop_y = clipRect->fBottom;
    }

    InverseBlitter  ib;
    PrePostProc     proc = NULL;

    if (path.isInverseFillType()) {
        ib.setBlitter(blitter, clipRgn.getBounds(), shiftEdgesUp);
        blitter = &ib;
        proc = PrePostInverseBlitterProc;
    }

    walk_edges(&headEdge, path.getFillType(), blitter, stop_y, proc);
}

void sk_blit_above_and_below(SkBlitter* blitter, const SkIRect& ir,
                             const SkRegion& clip) {
    const SkIRect& cr = clip.getBounds();
    SkIRect tmp;
    
    tmp.fLeft = cr.fLeft;
    tmp.fRight = cr.fRight;

    tmp.fTop = cr.fTop;
    tmp.fBottom = ir.fTop;
    if (!tmp.isEmpty()) {
        blitter->blitRectRegion(tmp, clip);
    }

    tmp.fTop = ir.fBottom;
    tmp.fBottom = cr.fBottom;
    if (!tmp.isEmpty()) {
        blitter->blitRectRegion(tmp, clip);
    }
}

/////////////////////////////////////////////////////////////////////////////////////

SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip, const SkIRect& ir)
{
    fBlitter = NULL;     // null means blit nothing
    fClipRect = NULL;

    if (clip)
    {
        fClipRect = &clip->getBounds();
        if (!SkIRect::Intersects(*fClipRect, ir))  // completely clipped out
            return;

        if (clip->isRect())
        {
            if (fClipRect->contains(ir))
                fClipRect = NULL;
            else
            {
                // only need a wrapper blitter if we're horizontally clipped
                if (fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight)
                {
                    fRectBlitter.init(blitter, *fClipRect);
                    blitter = &fRectBlitter;
                }
            }
        }
        else
        {
            fRgnBlitter.init(blitter, clip);
            blitter = &fRgnBlitter;
        }
    }
    fBlitter = blitter;
}

///////////////////////////////////////////////////////////////////////////////

void SkScan::FillPath(const SkPath& path, const SkRegion& clip,
                      SkBlitter* blitter) {
    if (clip.isEmpty()) {
        return;
    }

    SkRect  r;
    SkIRect ir;

    path.computeBounds(&r, SkPath::kFast_BoundsType);
    r.round(&ir);
    if (ir.isEmpty()) {
        if (path.isInverseFillType()) {
            blitter->blitRegion(clip);
        }
        return;
    }

    SkScanClipper   clipper(blitter, &clip, ir);

    blitter = clipper.getBlitter();
    if (blitter) {
        if (path.isInverseFillType()) {
            sk_blit_above_and_below(blitter, ir, clip);
        }
        sk_fill_path(path, clipper.getClipRect(), blitter, ir.fBottom, 0, clip);
    } else {
        // what does it mean to not have a blitter if path.isInverseFillType???
    }
}

///////////////////////////////////////////////////////////////////////////////

static int build_tri_edges(SkEdge edge[], const SkPoint pts[],
                           const SkIRect* clipRect, SkEdge* list[]) {
    SkEdge** start = list;
    
    if (edge->setLine(pts[0], pts[1], clipRect, 0)) {
        *list++ = edge;
        edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
    }
    if (edge->setLine(pts[1], pts[2], clipRect, 0)) {
        *list++ = edge;
        edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
    }
    if (edge->setLine(pts[2], pts[0], clipRect, 0)) {
        *list++ = edge;
    }
    return (int)(list - start);
}


void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect,
                      SkBlitter* blitter, const SkIRect& ir) {
    SkASSERT(pts && blitter);
    
    SkEdge edgeStorage[3];
    SkEdge* list[3];

    int count = build_tri_edges(edgeStorage, pts, clipRect, list);
    if (count < 2) {
        return;
    }

    SkEdge headEdge, tailEdge, *last;

    // this returns the first and last edge after they're sorted into a dlink list
    SkEdge* edge = sort_edges(list, count, &last);
    
    headEdge.fPrev = NULL;
    headEdge.fNext = edge;
    headEdge.fFirstY = kEDGE_HEAD_Y;
    headEdge.fX = SK_MinS32;
    edge->fPrev = &headEdge;
    
    tailEdge.fPrev = last;
    tailEdge.fNext = NULL;
    tailEdge.fFirstY = kEDGE_TAIL_Y;
    last->fNext = &tailEdge;
    
    // now edge is the head of the sorted linklist
    int stop_y = ir.fBottom;
    if (clipRect && stop_y > clipRect->fBottom) {
        stop_y = clipRect->fBottom;
    }
    walk_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, stop_y, NULL);
}

void SkScan::FillTriangle(const SkPoint pts[], const SkRegion* clip,
                          SkBlitter* blitter) {
    if (clip && clip->isEmpty()) {
        return;
    }
    
    SkRect  r;
    SkIRect ir;
    r.set(pts, 3);
    r.round(&ir);
    if (ir.isEmpty()) {
        return;
    }
    
    SkScanClipper   clipper(blitter, clip, ir);
    
    blitter = clipper.getBlitter();
    if (NULL != blitter) {
        sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir);
    }
}