1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashTraits_h
#define WTF_HashTraits_h
#include "wtf/HashFunctions.h"
#include "wtf/HashTableDeletedValueType.h"
#include "wtf/StdLibExtras.h"
#include "wtf/TypeTraits.h"
#include <limits>
#include <string.h> // For memset.
#include <type_traits>
#include <utility>
namespace WTF {
class String;
template <bool isInteger, typename T> struct GenericHashTraitsBase;
template <typename T> class OwnPtr;
template <typename T> class PassOwnPtr;
template <typename T> struct HashTraits;
enum ShouldWeakPointersBeMarkedStrongly {
WeakPointersActStrong,
WeakPointersActWeak
};
template <typename T> struct GenericHashTraitsBase<false, T> {
// The emptyValueIsZero flag is used to optimize allocation of empty hash
// tables with zeroed memory.
static const bool emptyValueIsZero = false;
// The hasIsEmptyValueFunction flag allows the hash table to automatically
// generate code to check for the empty value when it can be done with the
// equality operator, but allows custom functions for cases like String that
// need them.
static const bool hasIsEmptyValueFunction = false;
// The starting table size. Can be overridden when we know beforehand that a
// hash table will have at least N entries.
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
static const unsigned minimumTableSize = 1;
#else
static const unsigned minimumTableSize = 8;
#endif
template <typename U = void>
struct NeedsTracingLazily {
static const bool value = NeedsTracing<T>::value;
};
// The NeedsToForbidGCOnMove flag is used to make the hash table move
// operations safe when GC is enabled: if a move constructor invokes
// an allocation triggering the GC then it should be invoked within GC
// forbidden scope.
template <typename U = void>
struct NeedsToForbidGCOnMove {
// TODO(yutak): Consider using of std:::is_trivially_move_constructible
// when it is accessible.
static const bool value = !std::is_pod<T>::value;
};
static const WeakHandlingFlag weakHandlingFlag = IsWeak<T>::value ? WeakHandlingInCollections : NoWeakHandlingInCollections;
};
// Default integer traits disallow both 0 and -1 as keys (max value instead of
// -1 for unsigned).
template <typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> {
static const bool emptyValueIsZero = true;
static void constructDeletedValue(T& slot, bool) { slot = static_cast<T>(-1); }
static bool isDeletedValue(T value) { return value == static_cast<T>(-1); }
};
template <typename T> struct GenericHashTraits : GenericHashTraitsBase<std::is_integral<T>::value, T> {
typedef T TraitType;
typedef T EmptyValueType;
static T emptyValue() { return T(); }
// Type for functions that do not take ownership, such as contains.
typedef const T& PeekInType;
typedef T* IteratorGetType;
typedef const T* IteratorConstGetType;
typedef T& IteratorReferenceType;
typedef const T& IteratorConstReferenceType;
static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
// Type for functions that take ownership, such as add.
// The store function either not be called or called once to store something
// passed in. The value passed to the store function will be PassInType.
typedef const T& PassInType;
template <typename IncomingValueType>
static void store(IncomingValueType&& value, T& storage) { storage = std::forward<IncomingValueType>(value); }
// Type for return value of functions that transfer ownership, such as take.
typedef T PassOutType;
static T&& passOut(T& value) { return std::move(value); }
static T&& passOut(T&& value) { return std::move(value); }
// Type for return value of functions that do not transfer ownership, such
// as get.
// FIXME: We could change this type to const T& for better performance if we
// figured out a way to handle the return value from emptyValue, which is a
// temporary.
typedef T PeekOutType;
static const T& peek(const T& value) { return value; }
};
template <typename T> struct HashTraits : GenericHashTraits<T> { };
template <typename T> struct FloatHashTraits : GenericHashTraits<T> {
static T emptyValue() { return std::numeric_limits<T>::infinity(); }
static void constructDeletedValue(T& slot, bool) { slot = -std::numeric_limits<T>::infinity(); }
static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); }
};
template <> struct HashTraits<float> : FloatHashTraits<float> { };
template <> struct HashTraits<double> : FloatHashTraits<double> { };
// Default unsigned traits disallow both 0 and max as keys -- use these traits
// to allow zero and disallow max - 1.
template <typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> {
static const bool emptyValueIsZero = false;
static T emptyValue() { return std::numeric_limits<T>::max(); }
static void constructDeletedValue(T& slot, bool) { slot = std::numeric_limits<T>::max() - 1; }
static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; }
};
template <typename P> struct HashTraits<P*> : GenericHashTraits<P*> {
static const bool emptyValueIsZero = true;
static void constructDeletedValue(P*& slot, bool) { slot = reinterpret_cast<P*>(-1); }
static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); }
};
template <typename T> struct SimpleClassHashTraits : GenericHashTraits<T> {
static const bool emptyValueIsZero = true;
template <typename U = void>
struct NeedsToForbidGCOnMove {
static const bool value = false;
};
static void constructDeletedValue(T& slot, bool) { new (NotNull, &slot) T(HashTableDeletedValue); }
static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); }
};
template <typename P> struct HashTraits<OwnPtr<P>> : SimpleClassHashTraits<OwnPtr<P>> {
typedef std::nullptr_t EmptyValueType;
static EmptyValueType emptyValue() { return nullptr; }
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const OwnPtr<P>& value) { return !value; }
typedef typename OwnPtr<P>::PtrType PeekInType;
typedef PassOwnPtr<P> PassInType;
static void store(PassOwnPtr<P> value, OwnPtr<P>& storage) { storage = value; }
typedef PassOwnPtr<P> PassOutType;
static PassOwnPtr<P> passOut(OwnPtr<P>& value) { return value.release(); }
static PassOwnPtr<P> passOut(std::nullptr_t) { return nullptr; }
typedef typename OwnPtr<P>::PtrType PeekOutType;
static PeekOutType peek(const OwnPtr<P>& value) { return value.get(); }
static PeekOutType peek(std::nullptr_t) { return 0; }
};
template <typename P> struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> {
typedef std::nullptr_t EmptyValueType;
static EmptyValueType emptyValue() { return nullptr; }
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const RefPtr<P>& value) { return !value; }
typedef RefPtrValuePeeker<P> PeekInType;
typedef RefPtr<P>* IteratorGetType;
typedef const RefPtr<P>* IteratorConstGetType;
typedef RefPtr<P>& IteratorReferenceType;
typedef const RefPtr<P>& IteratorConstReferenceType;
static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
typedef PassRefPtr<P> PassInType;
static void store(PassRefPtr<P> value, RefPtr<P>& storage) { storage = value; }
typedef PassRefPtr<P> PassOutType;
static PassOutType passOut(RefPtr<P>& value) { return value.release(); }
static PassOutType passOut(std::nullptr_t) { return nullptr; }
typedef P* PeekOutType;
static PeekOutType peek(const RefPtr<P>& value) { return value.get(); }
static PeekOutType peek(std::nullptr_t) { return 0; }
};
template <typename T> struct HashTraits<RawPtr<T>> : HashTraits<T*> { };
template <> struct HashTraits<String> : SimpleClassHashTraits<String> {
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const String&);
};
// This struct template is an implementation detail of the
// isHashTraitsEmptyValue function, which selects either the emptyValue function
// or the isEmptyValue function to check for empty values.
template <typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker;
template <typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> {
template <typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); }
};
template <typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> {
template <typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); }
};
template <typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value)
{
return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value);
}
template <typename FirstTraitsArg, typename SecondTraitsArg>
struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType>> {
typedef FirstTraitsArg FirstTraits;
typedef SecondTraitsArg SecondTraits;
typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType;
typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType;
static const bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero;
static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); }
static const unsigned minimumTableSize = FirstTraits::minimumTableSize;
static void constructDeletedValue(TraitType& slot, bool zeroValue)
{
FirstTraits::constructDeletedValue(slot.first, zeroValue);
// For GC collections the memory for the backing is zeroed when it is
// allocated, and the constructors may take advantage of that,
// especially if a GC occurs during insertion of an entry into the
// table. This slot is being marked deleted, but If the slot is reused
// at a later point, the same assumptions around memory zeroing must
// hold as they did at the initial allocation. Therefore we zero the
// value part of the slot here for GC collections.
if (zeroValue)
memset(reinterpret_cast<void*>(&slot.second), 0, sizeof(slot.second));
}
static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); }
};
template <typename First, typename Second>
struct HashTraits<std::pair<First, Second>> : public PairHashTraits<HashTraits<First>, HashTraits<Second>> { };
template <typename KeyTypeArg, typename ValueTypeArg>
struct KeyValuePair {
typedef KeyTypeArg KeyType;
template <typename IncomingKeyType, typename IncomingValueType>
KeyValuePair(IncomingKeyType&& key, IncomingValueType&& value)
: key(std::forward<IncomingKeyType>(key))
, value(std::forward<IncomingValueType>(value))
{
}
template <typename OtherKeyType, typename OtherValueType>
KeyValuePair(KeyValuePair<OtherKeyType, OtherValueType>&& other)
: key(std::move(other.key))
, value(std::move(other.value))
{
}
KeyTypeArg key;
ValueTypeArg value;
};
template <typename KeyTraitsArg, typename ValueTraitsArg>
struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType>> {
typedef KeyTraitsArg KeyTraits;
typedef ValueTraitsArg ValueTraits;
typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType;
typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType;
static const bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero;
static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); }
template <typename U = void>
struct NeedsTracingLazily {
static const bool value = NeedsTracingTrait<KeyTraits>::value || NeedsTracingTrait<ValueTraits>::value;
};
template <typename U = void>
struct NeedsToForbidGCOnMove {
static const bool value = KeyTraits::template NeedsToForbidGCOnMove<>::value || ValueTraits::template NeedsToForbidGCOnMove<>::value;
};
static const WeakHandlingFlag weakHandlingFlag = (KeyTraits::weakHandlingFlag == WeakHandlingInCollections || ValueTraits::weakHandlingFlag == WeakHandlingInCollections) ? WeakHandlingInCollections : NoWeakHandlingInCollections;
static const unsigned minimumTableSize = KeyTraits::minimumTableSize;
static void constructDeletedValue(TraitType& slot, bool zeroValue)
{
KeyTraits::constructDeletedValue(slot.key, zeroValue);
// See similar code in this file for why we need to do this.
if (zeroValue)
memset(reinterpret_cast<void*>(&slot.value), 0, sizeof(slot.value));
}
static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); }
};
template <typename Key, typename Value>
struct HashTraits<KeyValuePair<Key, Value>> : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> { };
template <typename T>
struct NullableHashTraits : public HashTraits<T> {
static const bool emptyValueIsZero = false;
static T emptyValue() { return reinterpret_cast<T>(1); }
};
// This is for tracing inside collections that have special support for weak
// pointers. The trait has a trace method which returns true if there are weak
// pointers to things that have not (yet) been marked live. Returning true
// indicates that the entry in the collection may yet be removed by weak
// handling. Default implementation for non-weak types is to use the regular
// non-weak TraceTrait. Default implementation for types with weakness is to
// call traceInCollection on the type's trait.
template <WeakHandlingFlag weakHandlingFlag, ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct TraceInCollectionTrait;
} // namespace WTF
using WTF::HashTraits;
using WTF::PairHashTraits;
using WTF::NullableHashTraits;
using WTF::SimpleClassHashTraits;
#endif // WTF_HashTraits_h
|