summaryrefslogtreecommitdiffstats
path: root/third_party/harfbuzz-ng/src/hb-ot-shape-normalize.cc
blob: a9019fb7270494ba412ce116676eeea5b2106dd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
 * Copyright © 2011,2012  Google, Inc.
 *
 *  This is part of HarfBuzz, a text shaping library.
 *
 * Permission is hereby granted, without written agreement and without
 * license or royalty fees, to use, copy, modify, and distribute this
 * software and its documentation for any purpose, provided that the
 * above copyright notice and the following two paragraphs appear in
 * all copies of this software.
 *
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
 * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
 * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
 * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
 *
 * Google Author(s): Behdad Esfahbod
 */

#include "hb-ot-shape-normalize-private.hh"
#include "hb-ot-shape-private.hh"


/*
 * HIGHLEVEL DESIGN:
 *
 * This file exports one main function: _hb_ot_shape_normalize().
 *
 * This function closely reflects the Unicode Normalization Algorithm,
 * yet it's different.
 *
 * Each shaper specifies whether it prefers decomposed (NFD) or composed (NFC).
 * The logic however tries to use whatever the font can support.
 *
 * In general what happens is that: each grapheme is decomposed in a chain
 * of 1:2 decompositions, marks reordered, and then recomposed if desired,
 * so far it's like Unicode Normalization.  However, the decomposition and
 * recomposition only happens if the font supports the resulting characters.
 *
 * The goals are:
 *
 *   - Try to render all canonically equivalent strings similarly.  To really
 *     achieve this we have to always do the full decomposition and then
 *     selectively recompose from there.  It's kinda too expensive though, so
 *     we skip some cases.  For example, if composed is desired, we simply
 *     don't touch 1-character clusters that are supported by the font, even
 *     though their NFC may be different.
 *
 *   - When a font has a precomposed character for a sequence but the 'ccmp'
 *     feature in the font is not adequate, use the precomposed character
 *     which typically has better mark positioning.
 *
 *   - When a font does not support a combining mark, but supports it precomposed
 *     with previous base, use that.  This needs the itemizer to have this
 *     knowledge too.  We need to provide assistance to the itemizer.
 *
 *   - When a font does not support a character but supports its decomposition,
 *     well, use the decomposition.
 *
 *   - The Indic shaper requests decomposed output.  This will handle splitting
 *     matra for the Indic shaper.
 */

static void
output_glyph (hb_buffer_t *buffer, hb_codepoint_t glyph)
{
  buffer->output_glyph (glyph);
  _hb_glyph_info_set_unicode_props (&buffer->prev(), buffer->unicode);
}

static bool
decompose (hb_font_t *font, hb_buffer_t *buffer,
	   bool shortest,
	   hb_codepoint_t ab)
{
  hb_codepoint_t a, b, glyph;

  if (!hb_unicode_decompose (buffer->unicode, ab, &a, &b) ||
      (b && !hb_font_get_glyph (font, b, 0, &glyph)))
    return FALSE;

  bool has_a = hb_font_get_glyph (font, a, 0, &glyph);
  if (shortest && has_a) {
    /* Output a and b */
    output_glyph (buffer, a);
    if (b)
      output_glyph (buffer, b);
    return TRUE;
  }

  if (decompose (font, buffer, shortest, a)) {
    if (b)
      output_glyph (buffer, b);
    return TRUE;
  }

  if (has_a) {
    output_glyph (buffer, a);
    if (b)
      output_glyph (buffer, b);
    return TRUE;
  }

  return FALSE;
}

static void
decompose_current_glyph (hb_font_t *font, hb_buffer_t *buffer,
			 bool shortest)
{
  if (decompose (font, buffer, shortest, buffer->cur().codepoint))
    buffer->skip_glyph ();
  else
    buffer->next_glyph ();
}

static void
decompose_single_char_cluster (hb_font_t *font, hb_buffer_t *buffer,
			       bool will_recompose)
{
  hb_codepoint_t glyph;

  /* If recomposing and font supports this, we're good to go */
  if (will_recompose && hb_font_get_glyph (font, buffer->cur().codepoint, 0, &glyph)) {
    buffer->next_glyph ();
    return;
  }

  decompose_current_glyph (font, buffer, will_recompose);
}

static void
decompose_multi_char_cluster (hb_font_t *font, hb_buffer_t *buffer,
			      unsigned int end)
{
  /* TODO Currently if there's a variation-selector we give-up, it's just too hard. */
  for (unsigned int i = buffer->idx; i < end; i++)
    if (unlikely (_hb_unicode_is_variation_selector (buffer->info[i].codepoint))) {
      while (buffer->idx < end)
	buffer->next_glyph ();
      return;
    }

  while (buffer->idx < end)
    decompose_current_glyph (font, buffer, FALSE);
}

static int
compare_combining_class (const hb_glyph_info_t *pa, const hb_glyph_info_t *pb)
{
  unsigned int a = _hb_glyph_info_get_modified_combining_class (pa);
  unsigned int b = _hb_glyph_info_get_modified_combining_class (pb);

  return a < b ? -1 : a == b ? 0 : +1;
}

void
_hb_ot_shape_normalize (hb_font_t *font, hb_buffer_t *buffer,
			hb_ot_shape_normalization_mode_t mode)
{
  bool recompose = mode != HB_OT_SHAPE_NORMALIZATION_MODE_DECOMPOSED;
  bool has_multichar_clusters = FALSE;
  unsigned int count;

  /* We do a fairly straightforward yet custom normalization process in three
   * separate rounds: decompose, reorder, recompose (if desired).  Currently
   * this makes two buffer swaps.  We can make it faster by moving the last
   * two rounds into the inner loop for the first round, but it's more readable
   * this way. */


  /* First round, decompose */

  buffer->clear_output ();
  count = buffer->len;
  for (buffer->idx = 0; buffer->idx < count;)
  {
    unsigned int end;
    for (end = buffer->idx + 1; end < count; end++)
      if (buffer->cur().cluster != buffer->info[end].cluster)
        break;

    if (buffer->idx + 1 == end)
      decompose_single_char_cluster (font, buffer, recompose);
    else {
      decompose_multi_char_cluster (font, buffer, end);
      has_multichar_clusters = TRUE;
    }
  }
  buffer->swap_buffers ();


  if (mode != HB_OT_SHAPE_NORMALIZATION_MODE_COMPOSED_FULL && !has_multichar_clusters)
    return; /* Done! */


  /* Second round, reorder (inplace) */

  count = buffer->len;
  for (unsigned int i = 0; i < count; i++)
  {
    if (_hb_glyph_info_get_modified_combining_class (&buffer->info[i]) == 0)
      continue;

    unsigned int end;
    for (end = i + 1; end < count; end++)
      if (_hb_glyph_info_get_modified_combining_class (&buffer->info[end]) == 0)
        break;

    /* We are going to do a bubble-sort.  Only do this if the
     * sequence is short.  Doing it on long sequences can result
     * in an O(n^2) DoS. */
    if (end - i > 10) {
      i = end;
      continue;
    }

    hb_bubble_sort (buffer->info + i, end - i, compare_combining_class);

    i = end;
  }


  if (!recompose)
    return;

  /* Third round, recompose */

  /* As noted in the comment earlier, we don't try to combine
   * ccc=0 chars with their previous Starter. */

  buffer->clear_output ();
  count = buffer->len;
  unsigned int starter = 0;
  buffer->next_glyph ();
  while (buffer->idx < count)
  {
    hb_codepoint_t composed, glyph;
    if (/* If mode is NOT COMPOSED_FULL (ie. it's COMPOSED_DIACRITICS), we don't try to
	 * compose a CCC=0 character with it's preceding starter. */
	(mode == HB_OT_SHAPE_NORMALIZATION_MODE_COMPOSED_FULL ||
	 _hb_glyph_info_get_modified_combining_class (&buffer->cur()) != 0) &&
	/* If there's anything between the starter and this char, they should have CCC
	 * smaller than this character's. */
	(starter == buffer->out_len - 1 ||
	 _hb_glyph_info_get_modified_combining_class (&buffer->prev()) < _hb_glyph_info_get_modified_combining_class (&buffer->cur())) &&
	/* And compose. */
	hb_unicode_compose (buffer->unicode,
			    buffer->out_info[starter].codepoint,
			    buffer->cur().codepoint,
			    &composed) &&
	/* And the font has glyph for the composite. */
	hb_font_get_glyph (font, composed, 0, &glyph))
    {
      /* Composes. Modify starter and carry on. */
      buffer->out_info[starter].codepoint = composed;
      /* XXX update cluster */
      _hb_glyph_info_set_unicode_props (&buffer->out_info[starter], buffer->unicode);

      buffer->skip_glyph ();
      continue;
    }

    /* Blocked, or doesn't compose. */
    buffer->next_glyph ();

    if (_hb_glyph_info_get_modified_combining_class (&buffer->prev()) == 0)
      starter = buffer->out_len - 1;
  }
  buffer->swap_buffers ();

}