summaryrefslogtreecommitdiffstats
path: root/third_party/libwebp/frame.c
blob: 33cffd7b16a7300fe4b2e83f95473887d22905f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// Copyright 2010 Google Inc.
//
// This code is licensed under the same terms as WebM:
//  Software License Agreement:  http://www.webmproject.org/license/software/
//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Frame-reconstruction function. Memory allocation.
//
// Author: Skal (pascal.massimino@gmail.com)

#include <stdlib.h>
#include "vp8i.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

#define ALIGN_MASK (32 - 1)

//-----------------------------------------------------------------------------
// Memory setup

// how many extra luma lines are needed for caching, given a filtering level
static const uint8_t kFilterExtraRows[3] = { 0, 4, 8 };

int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
  const int mb_w = dec->mb_w_;
  const int intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
  const int top_size = (16 + 8 + 8) * mb_w;
  const int info_size = (mb_w + 1) * sizeof(VP8MB);
  const int yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
  const int coeffs_size = 384 * sizeof(*dec->coeffs_);
  const int cache_height = (16 + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
  const int cache_size = top_size * cache_height;
  const int needed = intra_pred_mode_size
                   + top_size + info_size
                   + yuv_size + coeffs_size
                   + cache_size + ALIGN_MASK;
  uint8_t* mem;

  if (needed > dec->mem_size_) {
    free(dec->mem_);
    dec->mem_size_ = 0;
    dec->mem_ = (uint8_t*)malloc(needed);
    if (dec->mem_ == NULL) {
      return VP8SetError(dec, 1, "no memory during frame initialization.");
    }
    dec->mem_size_ = needed;
  }

  mem = (uint8_t*)dec->mem_;
  dec->intra_t_ = (uint8_t*)mem;
  mem += intra_pred_mode_size;

  dec->y_t_ = (uint8_t*)mem;
  mem += 16 * mb_w;
  dec->u_t_ = (uint8_t*)mem;
  mem += 8 * mb_w;
  dec->v_t_ = (uint8_t*)mem;
  mem += 8 * mb_w;

  dec->mb_info_ = ((VP8MB*)mem) + 1;
  mem += info_size;

  mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
  assert((yuv_size & ALIGN_MASK) == 0);
  dec->yuv_b_ = (uint8_t*)mem;
  mem += yuv_size;

  dec->coeffs_ = (int16_t*)mem;
  mem += coeffs_size;

  dec->cache_y_stride_ = 16 * mb_w;
  dec->cache_uv_stride_ = 8 * mb_w;
  {
    const int extra_rows = kFilterExtraRows[dec->filter_type_];
    const int extra_y = extra_rows * dec->cache_y_stride_;
    const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
    dec->cache_y_ = ((uint8_t*)mem) + extra_y;
    dec->cache_u_ = dec->cache_y_ + 16 * dec->cache_y_stride_ + extra_uv;
    dec->cache_v_ = dec->cache_u_ + 8 * dec->cache_uv_stride_ + extra_uv;
  }
  mem += cache_size;

  // note: left-info is initialized once for all.
  memset(dec->mb_info_ - 1, 0, (mb_w + 1) * sizeof(*dec->mb_info_));

  // initialize top
  memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);

  // prepare 'io'
  io->width = dec->pic_hdr_.width_;
  io->height = dec->pic_hdr_.height_;
  io->mb_y = 0;
  io->y = dec->cache_y_;
  io->u = dec->cache_u_;
  io->v = dec->cache_v_;
  io->y_stride = dec->cache_y_stride_;
  io->uv_stride = dec->cache_uv_stride_;
  io->fancy_upscaling = 0;    // default

  // Init critical function pointers and look-up tables.
  VP8DspInitTables();
  VP8DspInit();

  return 1;
}

//-----------------------------------------------------------------------------
// Filtering

static inline int hev_thresh_from_level(int level, int keyframe) {
  if (keyframe) {
    return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
  } else {
    return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
  }
}

static void DoFilter(VP8Decoder* const dec, int mb_x, int mb_y) {
  VP8MB* const mb = dec->mb_info_ + mb_x;
  uint8_t* const y_dst = dec->cache_y_ + mb_x * 16;
  const int y_bps = dec->cache_y_stride_;
  const int level = mb->f_level_;
  const int ilevel = mb->f_ilevel_;
  const int limit = 2 * level + ilevel;
  if (dec->filter_type_ == 1) {   // simple
    if (mb_x > 0) {
      VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
    }
    if (mb->f_inner_) {
      VP8SimpleHFilter16i(y_dst, y_bps, limit);
    }
    if (mb_y > 0) {
      VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
    }
    if (mb->f_inner_) {
      VP8SimpleVFilter16i(y_dst, y_bps, limit);
    }
  } else {    // complex
    uint8_t* const u_dst = dec->cache_u_ + mb_x * 8;
    uint8_t* const v_dst = dec->cache_v_ + mb_x * 8;
    const int uv_bps = dec->cache_uv_stride_;
    const int hev_thresh =
        hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
    if (mb_x > 0) {
      VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
      VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
    }
    if (mb->f_inner_) {
      VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
      VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
    }
    if (mb_y > 0) {
      VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
      VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
    }
    if (mb->f_inner_) {
      VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
      VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
    }
  }
}

void VP8StoreBlock(VP8Decoder* const dec, VP8Io* const io) {
  if (dec->filter_type_ > 0) {
    VP8MB* const info = dec->mb_info_ + dec->mb_x_;
    int level = dec->filter_levels_[dec->segment_];
    if (dec->filter_hdr_.use_lf_delta_) {
      // TODO(skal): only CURRENT is handled for now.
      level += dec->filter_hdr_.ref_lf_delta_[0];
      if (dec->is_i4x4_) {
        level += dec->filter_hdr_.mode_lf_delta_[0];
      }
    }
    level = (level < 0) ? 0 : (level > 63) ? 63 : level;
    info->f_level_ = level;

    if (dec->filter_hdr_.sharpness_ > 0) {
      if (dec->filter_hdr_.sharpness_ > 4) {
        level >>= 2;
      } else {
        level >>= 1;
      }
      if (level > 9 - dec->filter_hdr_.sharpness_) {
        level = 9 - dec->filter_hdr_.sharpness_;
      }
    }

    info->f_ilevel_ = (level < 1) ? 1 : level;
    info->f_inner_ = (!info->skip_ || dec->is_i4x4_);
  }
  {
    // Transfer samples to row cache
    int y;
    uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16;
    uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8;
    uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8;
    for (y = 0; y < 16; ++y) {
      memcpy(ydst + y * dec->cache_y_stride_,
             dec->yuv_b_ + Y_OFF + y * BPS, 16);
    }
    for (y = 0; y < 8; ++y) {
      memcpy(udst + y * dec->cache_uv_stride_,
           dec->yuv_b_ + U_OFF + y * BPS, 8);
      memcpy(vdst + y * dec->cache_uv_stride_,
           dec->yuv_b_ + V_OFF + y * BPS, 8);
    }
  }
}

void VP8FinishRow(VP8Decoder* const dec, VP8Io* io) {
  const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
  const int ysize = extra_y_rows * dec->cache_y_stride_;
  const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
  const int first_row = (dec->mb_y_ == 0);
  const int last_row = (dec->mb_y_ >= dec->mb_h_ - 1);
  uint8_t* const ydst = dec->cache_y_ - ysize;
  uint8_t* const udst = dec->cache_u_ - uvsize;
  uint8_t* const vdst = dec->cache_v_ - uvsize;
  if (dec->filter_type_ > 0) {
    int mb_x;
    for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
      DoFilter(dec, mb_x, dec->mb_y_);
    }
  }
  if (io->put) {
    int y_start = dec->mb_y_ * 16;
    int y_end = y_start + 16;
    if (!first_row) {
      y_start -= extra_y_rows;
      io->y = ydst;
      io->u = udst;
      io->v = vdst;
    } else {
      io->y = dec->cache_y_;
      io->u = dec->cache_u_;
      io->v = dec->cache_v_;
    }
    if (!last_row) {
      y_end -= extra_y_rows;
    }
    if (y_end > io->height) {
      y_end = io->height;
    }
    io->mb_y = y_start;
    io->mb_h = y_end - y_start;
    io->put(io);
  }
    // rotate top samples
  if (!last_row) {
    memcpy(ydst, ydst + 16 * dec->cache_y_stride_, ysize);
    memcpy(udst, udst + 8 * dec->cache_uv_stride_, uvsize);
    memcpy(vdst, vdst + 8 * dec->cache_uv_stride_, uvsize);
  }
}

//-----------------------------------------------------------------------------
// Main reconstruction function.

static const int kScan[16] = {
  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
};

static inline int CheckMode(VP8Decoder* const dec, int mode) {
  if (mode == B_DC_PRED) {
    if (dec->mb_x_ == 0) {
      return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
    } else {
      return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
    }
  }
  return mode;
}

static inline void Copy32b(uint8_t* dst, uint8_t* src) {
  *(uint32_t*)dst = *(uint32_t*)src;
}

void VP8ReconstructBlock(VP8Decoder* const dec) {
  uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
  uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
  uint8_t* const v_dst = dec->yuv_b_ + V_OFF;

  // Rotate in the left samples from previously decoded block. We move four
  // pixels at a time for alignment reason, and because of in-loop filter.
  if (dec->mb_x_ > 0) {
    int j;
    for (j = -1; j < 16; ++j) {
      Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
    }
    for (j = -1; j < 8; ++j) {
      Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
      Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
    }
  } else {
    int j;
    for (j = 0; j < 16; ++j) {
      y_dst[j * BPS - 1] = 129;
    }
    for (j = 0; j < 8; ++j) {
      u_dst[j * BPS - 1] = 129;
      v_dst[j * BPS - 1] = 129;
    }
    // Init top-left sample on left column too
    if (dec->mb_y_ > 0) {
      y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
    }
  }
  {
    // bring top samples into the cache
    uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
    uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
    uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
    const int16_t* coeffs = dec->coeffs_;
    int n;

    if (dec->mb_y_ > 0) {
      memcpy(y_dst - BPS, top_y, 16);
      memcpy(u_dst - BPS, top_u, 8);
      memcpy(v_dst - BPS, top_v, 8);
    } else if (dec->mb_x_ == 0) {
      // we only need to do this init once at block (0,0).
      // Afterward, it remains valid for the whole topmost row.
      memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
      memset(u_dst - BPS - 1, 127, 8 + 1);
      memset(v_dst - BPS - 1, 127, 8 + 1);
    }

    // predict and add residuals

    if (dec->is_i4x4_) {   // 4x4
      uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);

      if (dec->mb_y_ > 0) {
        if (dec->mb_x_ >= dec->mb_w_ - 1) {    // on rightmost border
          top_right[0] = top_y[15] * 0x01010101u;
        } else {
          memcpy(top_right, top_y + 16, sizeof(*top_right));
        }
      }
      // replicate the top-right pixels below
      top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];

      // predict and add residues for all 4x4 blocks in turn.
      for (n = 0; n < 16; n++) {
        uint8_t* const dst = y_dst + kScan[n];
        VP8PredLuma4[dec->imodes_[n]](dst);
        if (dec->non_zero_ & (1 << n)) {
          VP8Transform(coeffs + n * 16, dst);
        } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
          VP8TransformDC(coeffs + n * 16, dst);
        }
      }
    } else {    // 16x16
      const int pred_func = CheckMode(dec, dec->imodes_[0]);
      VP8PredLuma16[pred_func](y_dst);
      if (dec->non_zero_) {
        for (n = 0; n < 16; n++) {
          uint8_t* const dst = y_dst + kScan[n];
          if (dec->non_zero_ac_ & (1 << n)) {
            VP8Transform(coeffs + n * 16, dst);
          } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
            VP8TransformDC(coeffs + n * 16, dst);
          }
        }
      }
    }
    {
      // Chroma
      const int pred_func = CheckMode(dec, dec->uvmode_);
      VP8PredChroma8[pred_func](u_dst);
      VP8PredChroma8[pred_func](v_dst);

      if (dec->non_zero_ & 0x0f0000) {   // chroma-U
        const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
        if (dec->non_zero_ac_ & 0x0f0000) {
          VP8TransformUV(u_coeffs, u_dst);
        } else {
          VP8TransformDCUV(u_coeffs, u_dst);
        }
      }
      if (dec->non_zero_ & 0xf00000) {   // chroma-V
        const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
        if (dec->non_zero_ac_ & 0xf00000) {
          VP8TransformUV(v_coeffs, v_dst);
        } else {
          VP8TransformDCUV(v_coeffs, v_dst);
        }
      }

      // stash away top samples for next block
      if (dec->mb_y_ < dec->mb_h_ - 1) {
        memcpy(top_y, y_dst + 15 * BPS, 16);
        memcpy(top_u, u_dst +  7 * BPS,  8);
        memcpy(top_v, v_dst +  7 * BPS,  8);
      }
    }
  }
}

//-----------------------------------------------------------------------------

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif