1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
/*
** 2008 February 16
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements an object that represents a fixed-length
** bitmap. Bits are numbered starting with 1.
**
** A bitmap is used to record what pages a database file have been
** journalled during a transaction. Usually only a few pages are
** journalled. So the bitmap is usually sparse and has low cardinality.
** But sometimes (for example when during a DROP of a large table) most
** or all of the pages get journalled. In those cases, the bitmap becomes
** dense. The algorithm needs to handle both cases well.
**
** The size of the bitmap is fixed when the object is created.
**
** All bits are clear when the bitmap is created. Individual bits
** may be set or cleared one at a time.
**
** Test operations are about 100 times more common that set operations.
** Clear operations are exceedingly rare. There are usually between
** 5 and 500 set operations per Bitvec object, though the number of sets can
** sometimes grow into tens of thousands or larger. The size of the
** Bitvec object is the number of pages in the database file at the
** start of a transaction, and is thus usually less than a few thousand,
** but can be as large as 2 billion for a really big database.
**
** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $
*/
#include "sqliteInt.h"
#define BITVEC_SZ 512
/* Round the union size down to the nearest pointer boundary, since that's how
** it will be aligned within the Bitvec struct. */
#define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
#define BITVEC_NCHAR BITVEC_USIZE
#define BITVEC_NBIT (BITVEC_NCHAR*8)
#define BITVEC_NINT (BITVEC_USIZE/4)
#define BITVEC_MXHASH (BITVEC_NINT/2)
#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
#define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
/*
** A bitmap is an instance of the following structure.
**
** This bitmap records the existance of zero or more bits
** with values between 1 and iSize, inclusive.
**
** There are three possible representations of the bitmap.
** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
** bitmap. The least significant bit is bit 1.
**
** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
** a hash table that will hold up to BITVEC_MXHASH distinct values.
**
** Otherwise, the value i is redirected into one of BITVEC_NPTR
** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
** handles up to iDivisor separate values of i. apSub[0] holds
** values between 1 and iDivisor. apSub[1] holds values between
** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
** to hold deal with values between 1 and iDivisor.
*/
struct Bitvec {
u32 iSize; /* Maximum bit index */
u32 nSet; /* Number of bits that are set */
u32 iDivisor; /* Number of bits handled by each apSub[] entry */
union {
u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
u32 aHash[BITVEC_NINT]; /* Hash table representation */
Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
} u;
};
/*
** Create a new bitmap object able to handle bits between 0 and iSize,
** inclusive. Return a pointer to the new object. Return NULL if
** malloc fails.
*/
Bitvec *sqlite3BitvecCreate(u32 iSize){
Bitvec *p;
assert( sizeof(*p)==BITVEC_SZ );
p = sqlite3MallocZero( sizeof(*p) );
if( p ){
p->iSize = iSize;
}
return p;
}
/*
** Check to see if the i-th bit is set. Return true or false.
** If p is NULL (if the bitmap has not been created) or if
** i is out of range, then return false.
*/
int sqlite3BitvecTest(Bitvec *p, u32 i){
if( p==0 ) return 0;
if( i>p->iSize || i==0 ) return 0;
if( p->iSize<=BITVEC_NBIT ){
i--;
return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
}
if( p->iDivisor>0 ){
u32 bin = (i-1)/p->iDivisor;
i = (i-1)%p->iDivisor + 1;
return sqlite3BitvecTest(p->u.apSub[bin], i);
}else{
u32 h = BITVEC_HASH(i);
while( p->u.aHash[h] ){
if( p->u.aHash[h]==i ) return 1;
h++;
if( h>=BITVEC_NINT ) h = 0;
}
return 0;
}
}
/*
** Set the i-th bit. Return 0 on success and an error code if
** anything goes wrong.
*/
int sqlite3BitvecSet(Bitvec *p, u32 i){
u32 h;
assert( p!=0 );
assert( i>0 );
assert( i<=p->iSize );
if( p->iSize<=BITVEC_NBIT ){
i--;
p->u.aBitmap[i/8] |= 1 << (i&7);
return SQLITE_OK;
}
if( p->iDivisor ){
u32 bin = (i-1)/p->iDivisor;
i = (i-1)%p->iDivisor + 1;
if( p->u.apSub[bin]==0 ){
sqlite3BeginBenignMalloc();
p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
sqlite3EndBenignMalloc();
if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
}
return sqlite3BitvecSet(p->u.apSub[bin], i);
}
h = BITVEC_HASH(i);
while( p->u.aHash[h] ){
if( p->u.aHash[h]==i ) return SQLITE_OK;
h++;
if( h==BITVEC_NINT ) h = 0;
}
p->nSet++;
if( p->nSet>=BITVEC_MXHASH ){
int j, rc;
u32 aiValues[BITVEC_NINT];
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
rc = sqlite3BitvecSet(p, i);
for(j=0; j<BITVEC_NINT; j++){
if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
}
return rc;
}
p->u.aHash[h] = i;
return SQLITE_OK;
}
/*
** Clear the i-th bit. Return 0 on success and an error code if
** anything goes wrong.
*/
void sqlite3BitvecClear(Bitvec *p, u32 i){
assert( p!=0 );
assert( i>0 );
if( p->iSize<=BITVEC_NBIT ){
i--;
p->u.aBitmap[i/8] &= ~(1 << (i&7));
}else if( p->iDivisor ){
u32 bin = (i-1)/p->iDivisor;
i = (i-1)%p->iDivisor + 1;
if( p->u.apSub[bin] ){
sqlite3BitvecClear(p->u.apSub[bin], i);
}
}else{
int j;
u32 aiValues[BITVEC_NINT];
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
p->nSet = 0;
for(j=0; j<BITVEC_NINT; j++){
if( aiValues[j] && aiValues[j]!=i ){
sqlite3BitvecSet(p, aiValues[j]);
}
}
}
}
/*
** Destroy a bitmap object. Reclaim all memory used.
*/
void sqlite3BitvecDestroy(Bitvec *p){
if( p==0 ) return;
if( p->iDivisor ){
int i;
for(i=0; i<BITVEC_NPTR; i++){
sqlite3BitvecDestroy(p->u.apSub[i]);
}
}
sqlite3_free(p);
}
#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** Let V[] be an array of unsigned characters sufficient to hold
** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
** Then the following macros can be used to set, clear, or test
** individual bits within V.
*/
#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
/*
** This routine runs an extensive test of the Bitvec code.
**
** The input is an array of integers that acts as a program
** to test the Bitvec. The integers are opcodes followed
** by 0, 1, or 3 operands, depending on the opcode. Another
** opcode follows immediately after the last operand.
**
** There are 6 opcodes numbered from 0 through 5. 0 is the
** "halt" opcode and causes the test to end.
**
** 0 Halt and return the number of errors
** 1 N S X Set N bits beginning with S and incrementing by X
** 2 N S X Clear N bits beginning with S and incrementing by X
** 3 N Set N randomly chosen bits
** 4 N Clear N randomly chosen bits
** 5 N S X Set N bits from S increment X in array only, not in bitvec
**
** The opcodes 1 through 4 perform set and clear operations are performed
** on both a Bitvec object and on a linear array of bits obtained from malloc.
** Opcode 5 works on the linear array only, not on the Bitvec.
** Opcode 5 is used to deliberately induce a fault in order to
** confirm that error detection works.
**
** At the conclusion of the test the linear array is compared
** against the Bitvec object. If there are any differences,
** an error is returned. If they are the same, zero is returned.
**
** If a memory allocation error occurs, return -1.
*/
int sqlite3BitvecBuiltinTest(int sz, int *aOp){
Bitvec *pBitvec = 0;
unsigned char *pV = 0;
int rc = -1;
int i, nx, pc, op;
/* Allocate the Bitvec to be tested and a linear array of
** bits to act as the reference */
pBitvec = sqlite3BitvecCreate( sz );
pV = sqlite3_malloc( (sz+7)/8 + 1 );
if( pBitvec==0 || pV==0 ) goto bitvec_end;
memset(pV, 0, (sz+7)/8 + 1);
/* Run the program */
pc = 0;
while( (op = aOp[pc])!=0 ){
switch( op ){
case 1:
case 2:
case 5: {
nx = 4;
i = aOp[pc+2] - 1;
aOp[pc+2] += aOp[pc+3];
break;
}
case 3:
case 4:
default: {
nx = 2;
sqlite3_randomness(sizeof(i), &i);
break;
}
}
if( (--aOp[pc+1]) > 0 ) nx = 0;
pc += nx;
i = (i & 0x7fffffff)%sz;
if( (op & 1)!=0 ){
SETBIT(pV, (i+1));
if( op!=5 ){
if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
}
}else{
CLEARBIT(pV, (i+1));
sqlite3BitvecClear(pBitvec, i+1);
}
}
/* Test to make sure the linear array exactly matches the
** Bitvec object. Start with the assumption that they do
** match (rc==0). Change rc to non-zero if a discrepancy
** is found.
*/
rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
+ sqlite3BitvecTest(pBitvec, 0);
for(i=1; i<=sz; i++){
if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
rc = i;
break;
}
}
/* Free allocated structure */
bitvec_end:
sqlite3_free(pV);
sqlite3BitvecDestroy(pBitvec);
return rc;
}
#endif /* SQLITE_OMIT_BUILTIN_TEST */
|