1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
/*
** 2008 December 3
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This module implements an object we call a "RowSet".
**
** The RowSet object is a collection of rowids. Rowids
** are inserted into the RowSet in an arbitrary order. Inserts
** can be intermixed with tests to see if a given rowid has been
** previously inserted into the RowSet.
**
** After all inserts are finished, it is possible to extract the
** elements of the RowSet in sorted order. Once this extraction
** process has started, no new elements may be inserted.
**
** Hence, the primitive operations for a RowSet are:
**
** CREATE
** INSERT
** TEST
** SMALLEST
** DESTROY
**
** The CREATE and DESTROY primitives are the constructor and destructor,
** obviously. The INSERT primitive adds a new element to the RowSet.
** TEST checks to see if an element is already in the RowSet. SMALLEST
** extracts the least value from the RowSet.
**
** The INSERT primitive might allocate additional memory. Memory is
** allocated in chunks so most INSERTs do no allocation. There is an
** upper bound on the size of allocated memory. No memory is freed
** until DESTROY.
**
** The TEST primitive includes a "batch" number. The TEST primitive
** will only see elements that were inserted before the last change
** in the batch number. In other words, if an INSERT occurs between
** two TESTs where the TESTs have the same batch nubmer, then the
** value added by the INSERT will not be visible to the second TEST.
** The initial batch number is zero, so if the very first TEST contains
** a non-zero batch number, it will see all prior INSERTs.
**
** No INSERTs may occurs after a SMALLEST. An assertion will fail if
** that is attempted.
**
** The cost of an INSERT is roughly constant. (Sometime new memory
** has to be allocated on an INSERT.) The cost of a TEST with a new
** batch number is O(NlogN) where N is the number of elements in the RowSet.
** The cost of a TEST using the same batch number is O(logN). The cost
** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
** primitives are constant time. The cost of DESTROY is O(N).
**
** There is an added cost of O(N) when switching between TEST and
** SMALLEST primitives.
**
** $Id: rowset.c,v 1.7 2009/05/22 01:00:13 drh Exp $
*/
#include "sqliteInt.h"
/*
** Target size for allocation chunks.
*/
#define ROWSET_ALLOCATION_SIZE 1024
/*
** The number of rowset entries per allocation chunk.
*/
#define ROWSET_ENTRY_PER_CHUNK \
((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
/*
** Each entry in a RowSet is an instance of the following object.
*/
struct RowSetEntry {
i64 v; /* ROWID value for this entry */
struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
};
/*
** RowSetEntry objects are allocated in large chunks (instances of the
** following structure) to reduce memory allocation overhead. The
** chunks are kept on a linked list so that they can be deallocated
** when the RowSet is destroyed.
*/
struct RowSetChunk {
struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
};
/*
** A RowSet in an instance of the following structure.
**
** A typedef of this structure if found in sqliteInt.h.
*/
struct RowSet {
struct RowSetChunk *pChunk; /* List of all chunk allocations */
sqlite3 *db; /* The database connection */
struct RowSetEntry *pEntry; /* List of entries using pRight */
struct RowSetEntry *pLast; /* Last entry on the pEntry list */
struct RowSetEntry *pFresh; /* Source of new entry objects */
struct RowSetEntry *pTree; /* Binary tree of entries */
u16 nFresh; /* Number of objects on pFresh */
u8 isSorted; /* True if pEntry is sorted */
u8 iBatch; /* Current insert batch */
};
/*
** Turn bulk memory into a RowSet object. N bytes of memory
** are available at pSpace. The db pointer is used as a memory context
** for any subsequent allocations that need to occur.
** Return a pointer to the new RowSet object.
**
** It must be the case that N is sufficient to make a Rowset. If not
** an assertion fault occurs.
**
** If N is larger than the minimum, use the surplus as an initial
** allocation of entries available to be filled.
*/
RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
RowSet *p;
assert( N >= ROUND8(sizeof(*p)) );
p = pSpace;
p->pChunk = 0;
p->db = db;
p->pEntry = 0;
p->pLast = 0;
p->pTree = 0;
p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
p->isSorted = 1;
p->iBatch = 0;
return p;
}
/*
** Deallocate all chunks from a RowSet. This frees all memory that
** the RowSet has allocated over its lifetime. This routine is
** the destructor for the RowSet.
*/
void sqlite3RowSetClear(RowSet *p){
struct RowSetChunk *pChunk, *pNextChunk;
for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
pNextChunk = pChunk->pNextChunk;
sqlite3DbFree(p->db, pChunk);
}
p->pChunk = 0;
p->nFresh = 0;
p->pEntry = 0;
p->pLast = 0;
p->pTree = 0;
p->isSorted = 1;
}
/*
** Insert a new value into a RowSet.
**
** The mallocFailed flag of the database connection is set if a
** memory allocation fails.
*/
void sqlite3RowSetInsert(RowSet *p, i64 rowid){
struct RowSetEntry *pEntry; /* The new entry */
struct RowSetEntry *pLast; /* The last prior entry */
assert( p!=0 );
if( p->nFresh==0 ){
struct RowSetChunk *pNew;
pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
if( pNew==0 ){
return;
}
pNew->pNextChunk = p->pChunk;
p->pChunk = pNew;
p->pFresh = pNew->aEntry;
p->nFresh = ROWSET_ENTRY_PER_CHUNK;
}
pEntry = p->pFresh++;
p->nFresh--;
pEntry->v = rowid;
pEntry->pRight = 0;
pLast = p->pLast;
if( pLast ){
if( p->isSorted && rowid<=pLast->v ){
p->isSorted = 0;
}
pLast->pRight = pEntry;
}else{
assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
p->pEntry = pEntry;
}
p->pLast = pEntry;
}
/*
** Merge two lists of RowSetEntry objects. Remove duplicates.
**
** The input lists are connected via pRight pointers and are
** assumed to each already be in sorted order.
*/
static struct RowSetEntry *rowSetMerge(
struct RowSetEntry *pA, /* First sorted list to be merged */
struct RowSetEntry *pB /* Second sorted list to be merged */
){
struct RowSetEntry head;
struct RowSetEntry *pTail;
pTail = &head;
while( pA && pB ){
assert( pA->pRight==0 || pA->v<=pA->pRight->v );
assert( pB->pRight==0 || pB->v<=pB->pRight->v );
if( pA->v<pB->v ){
pTail->pRight = pA;
pA = pA->pRight;
pTail = pTail->pRight;
}else if( pB->v<pA->v ){
pTail->pRight = pB;
pB = pB->pRight;
pTail = pTail->pRight;
}else{
pA = pA->pRight;
}
}
if( pA ){
assert( pA->pRight==0 || pA->v<=pA->pRight->v );
pTail->pRight = pA;
}else{
assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
pTail->pRight = pB;
}
return head.pRight;
}
/*
** Sort all elements on the pEntry list of the RowSet into ascending order.
*/
static void rowSetSort(RowSet *p){
unsigned int i;
struct RowSetEntry *pEntry;
struct RowSetEntry *aBucket[40];
assert( p->isSorted==0 );
memset(aBucket, 0, sizeof(aBucket));
while( p->pEntry ){
pEntry = p->pEntry;
p->pEntry = pEntry->pRight;
pEntry->pRight = 0;
for(i=0; aBucket[i]; i++){
pEntry = rowSetMerge(aBucket[i], pEntry);
aBucket[i] = 0;
}
aBucket[i] = pEntry;
}
pEntry = 0;
for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
pEntry = rowSetMerge(pEntry, aBucket[i]);
}
p->pEntry = pEntry;
p->pLast = 0;
p->isSorted = 1;
}
/*
** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
** Convert this tree into a linked list connected by the pRight pointers
** and return pointers to the first and last elements of the new list.
*/
static void rowSetTreeToList(
struct RowSetEntry *pIn, /* Root of the input tree */
struct RowSetEntry **ppFirst, /* Write head of the output list here */
struct RowSetEntry **ppLast /* Write tail of the output list here */
){
assert( pIn!=0 );
if( pIn->pLeft ){
struct RowSetEntry *p;
rowSetTreeToList(pIn->pLeft, ppFirst, &p);
p->pRight = pIn;
}else{
*ppFirst = pIn;
}
if( pIn->pRight ){
rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
}else{
*ppLast = pIn;
}
assert( (*ppLast)->pRight==0 );
}
/*
** Convert a sorted list of elements (connected by pRight) into a binary
** tree with depth of iDepth. A depth of 1 means the tree contains a single
** node taken from the head of *ppList. A depth of 2 means a tree with
** three nodes. And so forth.
**
** Use as many entries from the input list as required and update the
** *ppList to point to the unused elements of the list. If the input
** list contains too few elements, then construct an incomplete tree
** and leave *ppList set to NULL.
**
** Return a pointer to the root of the constructed binary tree.
*/
static struct RowSetEntry *rowSetNDeepTree(
struct RowSetEntry **ppList,
int iDepth
){
struct RowSetEntry *p; /* Root of the new tree */
struct RowSetEntry *pLeft; /* Left subtree */
if( *ppList==0 ){
return 0;
}
if( iDepth==1 ){
p = *ppList;
*ppList = p->pRight;
p->pLeft = p->pRight = 0;
return p;
}
pLeft = rowSetNDeepTree(ppList, iDepth-1);
p = *ppList;
if( p==0 ){
return pLeft;
}
p->pLeft = pLeft;
*ppList = p->pRight;
p->pRight = rowSetNDeepTree(ppList, iDepth-1);
return p;
}
/*
** Convert a sorted list of elements into a binary tree. Make the tree
** as deep as it needs to be in order to contain the entire list.
*/
static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
int iDepth; /* Depth of the tree so far */
struct RowSetEntry *p; /* Current tree root */
struct RowSetEntry *pLeft; /* Left subtree */
assert( pList!=0 );
p = pList;
pList = p->pRight;
p->pLeft = p->pRight = 0;
for(iDepth=1; pList; iDepth++){
pLeft = p;
p = pList;
pList = p->pRight;
p->pLeft = pLeft;
p->pRight = rowSetNDeepTree(&pList, iDepth);
}
return p;
}
/*
** Convert the list in p->pEntry into a sorted list if it is not
** sorted already. If there is a binary tree on p->pTree, then
** convert it into a list too and merge it into the p->pEntry list.
*/
static void rowSetToList(RowSet *p){
if( !p->isSorted ){
rowSetSort(p);
}
if( p->pTree ){
struct RowSetEntry *pHead, *pTail;
rowSetTreeToList(p->pTree, &pHead, &pTail);
p->pTree = 0;
p->pEntry = rowSetMerge(p->pEntry, pHead);
}
}
/*
** Extract the smallest element from the RowSet.
** Write the element into *pRowid. Return 1 on success. Return
** 0 if the RowSet is already empty.
**
** After this routine has been called, the sqlite3RowSetInsert()
** routine may not be called again.
*/
int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
rowSetToList(p);
if( p->pEntry ){
*pRowid = p->pEntry->v;
p->pEntry = p->pEntry->pRight;
if( p->pEntry==0 ){
sqlite3RowSetClear(p);
}
return 1;
}else{
return 0;
}
}
/*
** Check to see if element iRowid was inserted into the the rowset as
** part of any insert batch prior to iBatch. Return 1 or 0.
*/
int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
struct RowSetEntry *p;
if( iBatch!=pRowSet->iBatch ){
if( pRowSet->pEntry ){
rowSetToList(pRowSet);
pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
pRowSet->pEntry = 0;
pRowSet->pLast = 0;
}
pRowSet->iBatch = iBatch;
}
p = pRowSet->pTree;
while( p ){
if( p->v<iRowid ){
p = p->pRight;
}else if( p->v>iRowid ){
p = p->pLeft;
}else{
return 1;
}
}
return 0;
}
|