1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
// Copyright (c) 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Geoff Pike
//
// This file provides a minimal cache that can hold a <key, value> pair
// with little if any wasted space. The types of the key and value
// must be unsigned integral types or at least have unsigned semantics
// for >>, casting, and similar operations.
//
// Synchronization is not provided. However, the cache is implemented
// as an array of cache entries whose type is chosen at compile time.
// If a[i] is atomic on your hardware for the chosen array type then
// raciness will not necessarily lead to bugginess. The cache entries
// must be large enough to hold a partial key and a value packed
// together. The partial keys are bit strings of length
// kKeybits - kHashbits, and the values are bit strings of length kValuebits.
//
// In an effort to use minimal space, every cache entry represents
// some <key, value> pair; the class provides no way to mark a cache
// entry as empty or uninitialized. In practice, you may want to have
// reserved keys or values to get around this limitation. For example, in
// tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as
// "unknown sizeclass."
//
// Usage Considerations
// --------------------
//
// kHashbits controls the size of the cache. The best value for
// kHashbits will of course depend on the application. Perhaps try
// tuning the value of kHashbits by measuring different values on your
// favorite benchmark. Also remember not to be a pig; other
// programs that need resources may suffer if you are.
//
// The main uses for this class will be when performance is
// critical and there's a convenient type to hold the cache's
// entries. As described above, the number of bits required
// for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose
// kKeybits + kValuebits is 43. Then it probably makes sense to
// chose kHashbits >= 11 so that cache entries fit in a uint32.
//
// On the other hand, suppose kKeybits = kValuebits = 64. Then
// using this class may be less worthwhile. You'll probably
// be using 128 bits for each entry anyway, so maybe just pick
// a hash function, H, and use an array indexed by H(key):
// void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); }
// V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... }
// etc.
//
// Further Details
// ---------------
//
// For caches used only by one thread, the following is true:
// 1. For a cache c,
// (c.Put(key, value), c.GetOrDefault(key, 0)) == value
// and
// (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value
// if the elided code contains no c.Put calls.
//
// 2. Has(key) will return false if no <key, value> pair with that key
// has ever been Put. However, a newly initialized cache will have
// some <key, value> pairs already present. When you create a new
// cache, you must specify an "initial value." The initialization
// procedure is equivalent to Clear(initial_value), which is
// equivalent to Put(k, initial_value) for all keys k from 0 to
// 2^kHashbits - 1.
//
// 3. If key and key' differ then the only way Put(key, value) may
// cause Has(key') to change is that Has(key') may change from true to
// false. Furthermore, a Put() call that doesn't change Has(key')
// doesn't change GetOrDefault(key', ...) either.
//
// Implementation details:
//
// This is a direct-mapped cache with 2^kHashbits entries; the hash
// function simply takes the low bits of the key. We store whole keys
// if a whole key plus a whole value fits in an entry. Otherwise, an
// entry is the high bits of a key and a value, packed together.
// E.g., a 20 bit key and a 7 bit value only require a uint16 for each
// entry if kHashbits >= 11.
//
// Alternatives to this scheme will be added as needed.
#ifndef TCMALLOC_PACKED_CACHE_INL_H_
#define TCMALLOC_PACKED_CACHE_INL_H_
#include "config.h"
#include <stddef.h> // for size_t
#ifdef HAVE_STDINT_H
#include <stdint.h> // for uintptr_t
#endif
#include "base/basictypes.h"
#include "internal_logging.h"
// A safe way of doing "(1 << n) - 1" -- without worrying about overflow
// Note this will all be resolved to a constant expression at compile-time
#define N_ONES_(IntType, N) \
( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \
(static_cast<IntType>(1) << ((N)-1))) )
// The types K and V provide upper bounds on the number of valid keys
// and values, but we explicitly require the keys to be less than
// 2^kKeybits and the values to be less than 2^kValuebits. The size of
// the table is controlled by kHashbits, and the type of each entry in
// the cache is T. See also the big comment at the top of the file.
template <int kKeybits, typename T>
class PackedCache {
public:
typedef uintptr_t K;
typedef size_t V;
#ifdef TCMALLOC_SMALL_BUT_SLOW
// Decrease the size map cache if running in the small memory mode.
static const int kHashbits = 12;
#else
static const int kHashbits = 16;
#endif
static const int kValuebits = 7;
static const bool kUseWholeKeys = kKeybits + kValuebits <= 8 * sizeof(T);
explicit PackedCache(V initial_value) {
COMPILE_ASSERT(kKeybits <= sizeof(K) * 8, key_size);
COMPILE_ASSERT(kValuebits <= sizeof(V) * 8, value_size);
COMPILE_ASSERT(kHashbits <= kKeybits, hash_function);
COMPILE_ASSERT(kKeybits - kHashbits + kValuebits <= kTbits,
entry_size_must_be_big_enough);
Clear(initial_value);
}
void Put(K key, V value) {
ASSERT(key == (key & kKeyMask));
ASSERT(value == (value & kValueMask));
array_[Hash(key)] = KeyToUpper(key) | value;
}
bool Has(K key) const {
ASSERT(key == (key & kKeyMask));
return KeyMatch(array_[Hash(key)], key);
}
V GetOrDefault(K key, V default_value) const {
// As with other code in this class, we touch array_ as few times
// as we can. Assuming entries are read atomically (e.g., their
// type is uintptr_t on most hardware) then certain races are
// harmless.
ASSERT(key == (key & kKeyMask));
T entry = array_[Hash(key)];
return KeyMatch(entry, key) ? EntryToValue(entry) : default_value;
}
void Clear(V value) {
ASSERT(value == (value & kValueMask));
for (int i = 0; i < 1 << kHashbits; i++) {
ASSERT(kUseWholeKeys || KeyToUpper(i) == 0);
array_[i] = kUseWholeKeys ? (value | KeyToUpper(i)) : value;
}
}
private:
// We are going to pack a value and the upper part of a key (or a
// whole key) into an entry of type T. The UPPER type is for the
// upper part of a key, after the key has been masked and shifted
// for inclusion in an entry.
typedef T UPPER;
static V EntryToValue(T t) { return t & kValueMask; }
// If we have space for a whole key, we just shift it left.
// Otherwise kHashbits determines where in a K to find the upper
// part of the key, and kValuebits determines where in the entry to
// put it.
static UPPER KeyToUpper(K k) {
if (kUseWholeKeys) {
return static_cast<T>(k) << kValuebits;
} else {
const int shift = kHashbits - kValuebits;
// Assume kHashbits >= kValuebits. It'd be easy to lift this assumption.
return static_cast<T>(k >> shift) & kUpperMask;
}
}
static size_t Hash(K key) {
return static_cast<size_t>(key) & N_ONES_(size_t, kHashbits);
}
// Does the entry match the relevant part of the given key?
static bool KeyMatch(T entry, K key) {
return kUseWholeKeys ?
(entry >> kValuebits == key) :
((KeyToUpper(key) ^ entry) & kUpperMask) == 0;
}
static const int kTbits = 8 * sizeof(T);
static const int kUpperbits = kUseWholeKeys ? kKeybits : kKeybits - kHashbits;
// For masking a K.
static const K kKeyMask = N_ONES_(K, kKeybits);
// For masking a T.
static const T kUpperMask = N_ONES_(T, kUpperbits) << kValuebits;
// For masking a V or a T.
static const V kValueMask = N_ONES_(V, kValuebits);
// array_ is the cache. Its elements are volatile because any
// thread can write any array element at any time.
volatile T array_[1 << kHashbits];
};
#undef N_ONES_
#endif // TCMALLOC_PACKED_CACHE_INL_H_
|