1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <iostream>
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include "base/base64.h"
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/containers/hash_tables.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"
const unsigned int kPageSize = getpagesize();
namespace {
class BitSet {
public:
void resize(size_t nbits) {
data_.resize((nbits + 7) / 8);
}
void set(uint32 bit) {
const uint32 byte_idx = bit / 8;
CHECK(byte_idx < data_.size());
data_[byte_idx] |= (1 << (bit & 7));
}
std::string AsB64String() const {
// Simple optimization: strip trailing zero bytes from the bitmap.
// For instance, if a region has 32 pages but only the first 9 are resident,
// The full bitmap would be 0xff 0x01 0x00 0x00, the stripped one 0xff 0x01.
// It can save up to some seconds when printing large mmaps, in particular
// in presence of large virtual address space reservations (where none of
// the pages are resident).
size_t end = data_.size();
while (end > 0 && data_[end - 1] == '\0')
--end;
std::string bits(&data_[0], end);
std::string b64_string;
base::Base64Encode(bits, &b64_string);
return b64_string;
}
private:
std::vector<char> data_;
};
// An entry in /proc/<pid>/pagemap.
struct PageMapEntry {
uint64 page_frame_number : 55;
uint unused : 8;
uint present : 1;
};
// Describes a memory page.
struct PageInfo {
int64 page_frame_number; // Physical page id, also known as PFN.
int64 flags;
int32 times_mapped;
};
struct PageCount {
PageCount() : total_count(0), unevictable_count(0) {}
int total_count;
int unevictable_count;
};
struct MemoryMap {
std::string name;
std::string flags;
uint64 start_address;
uint64 end_address;
uint64 offset;
PageCount private_pages;
// app_shared_pages[i] contains the number of pages mapped in i+2 processes
// (only among the processes that are being analyzed).
std::vector<PageCount> app_shared_pages;
PageCount other_shared_pages;
std::vector<PageInfo> committed_pages;
// committed_pages_bits is a bitset reflecting the present bit for all the
// virtual pages of the mapping.
BitSet committed_pages_bits;
};
struct ProcessMemory {
pid_t pid;
std::vector<MemoryMap> memory_maps;
};
bool PageIsUnevictable(const PageInfo& page_info) {
// These constants are taken from kernel-page-flags.h.
const int KPF_DIRTY = 4; // Note that only file-mapped pages can be DIRTY.
const int KPF_ANON = 12; // Anonymous pages are dirty per definition.
const int KPF_UNEVICTABLE = 18;
const int KPF_MLOCKED = 33;
return (page_info.flags & ((1ll << KPF_DIRTY) |
(1ll << KPF_ANON) |
(1ll << KPF_UNEVICTABLE) |
(1ll << KPF_MLOCKED))) ?
true : false;
}
// Number of times a physical page is mapped in a process.
typedef base::hash_map<uint64, int> PFNMap;
// Parses lines from /proc/<PID>/maps, e.g.:
// 401e7000-401f5000 r-xp 00000000 103:02 158 /system/bin/linker
bool ParseMemoryMapLine(const std::string& line,
std::vector<std::string>* tokens,
MemoryMap* memory_map) {
tokens->clear();
base::SplitString(line, ' ', tokens);
if (tokens->size() < 2)
return false;
const std::string& addr_range = tokens->at(0);
std::vector<std::string> range_tokens;
base::SplitString(addr_range, '-', &range_tokens);
const std::string& start_address_token = range_tokens.at(0);
if (!base::HexStringToUInt64(start_address_token,
&memory_map->start_address)) {
return false;
}
const std::string& end_address_token = range_tokens.at(1);
if (!base::HexStringToUInt64(end_address_token, &memory_map->end_address)) {
return false;
}
if (tokens->at(1).size() != strlen("rwxp"))
return false;
memory_map->flags.swap(tokens->at(1));
if (!base::HexStringToUInt64(tokens->at(2), &memory_map->offset))
return false;
memory_map->committed_pages_bits.resize(
(memory_map->end_address - memory_map->start_address) / kPageSize);
const int map_name_index = 5;
if (tokens->size() >= map_name_index + 1) {
for (std::vector<std::string>::const_iterator it =
tokens->begin() + map_name_index; it != tokens->end(); ++it) {
if (!it->empty()) {
if (!memory_map->name.empty())
memory_map->name.append(" ");
memory_map->name.append(*it);
}
}
}
return true;
}
// Reads sizeof(T) bytes from file |fd| at |offset|.
template <typename T>
bool ReadFromFileAtOffset(int fd, off_t offset, T* value) {
if (lseek64(fd, offset * sizeof(*value), SEEK_SET) < 0) {
PLOG(ERROR) << "lseek";
return false;
}
ssize_t bytes = read(fd, value, sizeof(*value));
if (bytes != sizeof(*value) && bytes != 0) {
PLOG(ERROR) << "read";
return false;
}
return true;
}
// Fills |process_maps| in with the process memory maps identified by |pid|.
bool GetProcessMaps(pid_t pid, std::vector<MemoryMap>* process_maps) {
std::ifstream maps_file(base::StringPrintf("/proc/%d/maps", pid).c_str());
if (!maps_file.good()) {
PLOG(ERROR) << "open";
return false;
}
std::string line;
std::vector<std::string> tokens;
while (std::getline(maps_file, line) && !line.empty()) {
MemoryMap memory_map = {};
if (!ParseMemoryMapLine(line, &tokens, &memory_map)) {
LOG(ERROR) << "Could not parse line: " << line;
return false;
}
process_maps->push_back(memory_map);
}
return true;
}
// Fills |committed_pages| in with the set of committed pages contained in the
// provided memory map.
bool GetPagesForMemoryMap(int pagemap_fd,
const MemoryMap& memory_map,
std::vector<PageInfo>* committed_pages,
BitSet* committed_pages_bits) {
const off64_t offset = memory_map.start_address / kPageSize;
if (lseek64(pagemap_fd, offset * sizeof(PageMapEntry), SEEK_SET) < 0) {
PLOG(ERROR) << "lseek";
return false;
}
for (uint64 addr = memory_map.start_address, page_index = 0;
addr < memory_map.end_address;
addr += kPageSize, ++page_index) {
DCHECK_EQ(0, addr % kPageSize);
PageMapEntry page_map_entry = {};
COMPILE_ASSERT(sizeof(PageMapEntry) == sizeof(uint64), unexpected_size);
ssize_t bytes = read(pagemap_fd, &page_map_entry, sizeof(page_map_entry));
if (bytes != sizeof(PageMapEntry) && bytes != 0) {
PLOG(ERROR) << "read";
return false;
}
if (page_map_entry.present) { // Ignore non-committed pages.
if (page_map_entry.page_frame_number == 0)
continue;
PageInfo page_info = {};
page_info.page_frame_number = page_map_entry.page_frame_number;
committed_pages->push_back(page_info);
committed_pages_bits->set(page_index);
}
}
return true;
}
// Fills |committed_pages| with mapping count and flags information gathered
// looking-up /proc/kpagecount and /proc/kpageflags.
bool SetPagesInfo(int pagecount_fd,
int pageflags_fd,
std::vector<PageInfo>* pages) {
for (std::vector<PageInfo>::iterator it = pages->begin();
it != pages->end(); ++it) {
PageInfo* const page_info = &*it;
int64 times_mapped;
if (!ReadFromFileAtOffset(
pagecount_fd, page_info->page_frame_number, ×_mapped)) {
return false;
}
DCHECK(times_mapped <= std::numeric_limits<int32_t>::max());
page_info->times_mapped = static_cast<int32>(times_mapped);
int64 page_flags;
if (!ReadFromFileAtOffset(
pageflags_fd, page_info->page_frame_number, &page_flags)) {
return false;
}
page_info->flags = page_flags;
}
return true;
}
// Fills in the provided vector of Page Frame Number maps. This lets
// ClassifyPages() know how many times each page is mapped in the processes.
void FillPFNMaps(const std::vector<ProcessMemory>& processes_memory,
std::vector<PFNMap>* pfn_maps) {
int current_process_index = 0;
for (std::vector<ProcessMemory>::const_iterator it = processes_memory.begin();
it != processes_memory.end(); ++it, ++current_process_index) {
const std::vector<MemoryMap>& memory_maps = it->memory_maps;
for (std::vector<MemoryMap>::const_iterator it = memory_maps.begin();
it != memory_maps.end(); ++it) {
const std::vector<PageInfo>& pages = it->committed_pages;
for (std::vector<PageInfo>::const_iterator it = pages.begin();
it != pages.end(); ++it) {
const PageInfo& page_info = *it;
PFNMap* const pfn_map = &(*pfn_maps)[current_process_index];
const std::pair<PFNMap::iterator, bool> result = pfn_map->insert(
std::make_pair(page_info.page_frame_number, 0));
++result.first->second;
}
}
}
}
// Sets the private_count/app_shared_pages/other_shared_count fields of the
// provided memory maps for each process.
void ClassifyPages(std::vector<ProcessMemory>* processes_memory) {
std::vector<PFNMap> pfn_maps(processes_memory->size());
FillPFNMaps(*processes_memory, &pfn_maps);
// Hash set keeping track of the physical pages mapped in a single process so
// that they can be counted only once.
base::hash_set<uint64> physical_pages_mapped_in_process;
for (std::vector<ProcessMemory>::iterator it = processes_memory->begin();
it != processes_memory->end(); ++it) {
std::vector<MemoryMap>* const memory_maps = &it->memory_maps;
physical_pages_mapped_in_process.clear();
for (std::vector<MemoryMap>::iterator it = memory_maps->begin();
it != memory_maps->end(); ++it) {
MemoryMap* const memory_map = &*it;
const size_t processes_count = processes_memory->size();
memory_map->app_shared_pages.resize(processes_count - 1);
const std::vector<PageInfo>& pages = memory_map->committed_pages;
for (std::vector<PageInfo>::const_iterator it = pages.begin();
it != pages.end(); ++it) {
const PageInfo& page_info = *it;
if (page_info.times_mapped == 1) {
++memory_map->private_pages.total_count;
if (PageIsUnevictable(page_info))
++memory_map->private_pages.unevictable_count;
continue;
}
const uint64 page_frame_number = page_info.page_frame_number;
const std::pair<base::hash_set<uint64>::iterator, bool> result =
physical_pages_mapped_in_process.insert(page_frame_number);
const bool did_insert = result.second;
if (!did_insert) {
// This physical page (mapped multiple times in the same process) was
// already counted.
continue;
}
// See if the current physical page is also mapped in the other
// processes that are being analyzed.
int times_mapped = 0;
int mapped_in_processes_count = 0;
for (std::vector<PFNMap>::const_iterator it = pfn_maps.begin();
it != pfn_maps.end(); ++it) {
const PFNMap& pfn_map = *it;
const PFNMap::const_iterator found_it = pfn_map.find(
page_frame_number);
if (found_it == pfn_map.end())
continue;
++mapped_in_processes_count;
times_mapped += found_it->second;
}
PageCount* page_count_to_update = NULL;
if (times_mapped == page_info.times_mapped) {
// The physical page is only mapped in the processes that are being
// analyzed.
if (mapped_in_processes_count > 1) {
// The physical page is mapped in multiple processes.
page_count_to_update =
&memory_map->app_shared_pages[mapped_in_processes_count - 2];
} else {
// The physical page is mapped multiple times in the same process.
page_count_to_update = &memory_map->private_pages;
}
} else {
page_count_to_update = &memory_map->other_shared_pages;
}
++page_count_to_update->total_count;
if (PageIsUnevictable(page_info))
++page_count_to_update->unevictable_count;
}
}
}
}
void AppendAppSharedField(const std::vector<PageCount>& app_shared_pages,
std::string* out) {
out->append("[");
for (std::vector<PageCount>::const_iterator it = app_shared_pages.begin();
it != app_shared_pages.end(); ++it) {
out->append(base::IntToString(it->total_count * kPageSize));
out->append(":");
out->append(base::IntToString(it->unevictable_count * kPageSize));
if (it + 1 != app_shared_pages.end())
out->append(",");
}
out->append("]");
}
void DumpProcessesMemoryMapsInShortFormat(
const std::vector<ProcessMemory>& processes_memory) {
const int KB_PER_PAGE = kPageSize >> 10;
std::vector<int> totals_app_shared(processes_memory.size());
std::string buf;
std::cout << "pid\tprivate\t\tshared_app\tshared_other (KB)\n";
for (std::vector<ProcessMemory>::const_iterator it = processes_memory.begin();
it != processes_memory.end(); ++it) {
const ProcessMemory& process_memory = *it;
std::fill(totals_app_shared.begin(), totals_app_shared.end(), 0);
int total_private = 0, total_other_shared = 0;
const std::vector<MemoryMap>& memory_maps = process_memory.memory_maps;
for (std::vector<MemoryMap>::const_iterator it = memory_maps.begin();
it != memory_maps.end(); ++it) {
const MemoryMap& memory_map = *it;
total_private += memory_map.private_pages.total_count;
for (size_t i = 0; i < memory_map.app_shared_pages.size(); ++i)
totals_app_shared[i] += memory_map.app_shared_pages[i].total_count;
total_other_shared += memory_map.other_shared_pages.total_count;
}
double total_app_shared = 0;
for (size_t i = 0; i < totals_app_shared.size(); ++i)
total_app_shared += static_cast<double>(totals_app_shared[i]) / (i + 2);
base::SStringPrintf(
&buf, "%d\t%d\t\t%d\t\t%d\n",
process_memory.pid,
total_private * KB_PER_PAGE,
static_cast<int>(total_app_shared) * KB_PER_PAGE,
total_other_shared * KB_PER_PAGE);
std::cout << buf;
}
}
void DumpProcessesMemoryMapsInExtendedFormat(
const std::vector<ProcessMemory>& processes_memory) {
std::string buf;
std::string app_shared_buf;
for (std::vector<ProcessMemory>::const_iterator it = processes_memory.begin();
it != processes_memory.end(); ++it) {
const ProcessMemory& process_memory = *it;
std::cout << "[ PID=" << process_memory.pid << "]" << '\n';
const std::vector<MemoryMap>& memory_maps = process_memory.memory_maps;
for (std::vector<MemoryMap>::const_iterator it = memory_maps.begin();
it != memory_maps.end(); ++it) {
const MemoryMap& memory_map = *it;
app_shared_buf.clear();
AppendAppSharedField(memory_map.app_shared_pages, &app_shared_buf);
base::SStringPrintf(
&buf,
"%"PRIx64"-%"PRIx64" %s %"PRIx64" private_unevictable=%d private=%d "
"shared_app=%s shared_other_unevictable=%d shared_other=%d "
"\"%s\" [%s]\n",
memory_map.start_address,
memory_map.end_address,
memory_map.flags.c_str(),
memory_map.offset,
memory_map.private_pages.unevictable_count * kPageSize,
memory_map.private_pages.total_count * kPageSize,
app_shared_buf.c_str(),
memory_map.other_shared_pages.unevictable_count * kPageSize,
memory_map.other_shared_pages.total_count * kPageSize,
memory_map.name.c_str(),
memory_map.committed_pages_bits.AsB64String().c_str());
std::cout << buf;
}
}
}
bool CollectProcessMemoryInformation(int page_count_fd,
int page_flags_fd,
ProcessMemory* process_memory) {
const pid_t pid = process_memory->pid;
base::ScopedFD pagemap_fd(HANDLE_EINTR(open(
base::StringPrintf("/proc/%d/pagemap", pid).c_str(), O_RDONLY)));
if (!pagemap_fd.is_valid()) {
PLOG(ERROR) << "open";
return false;
}
std::vector<MemoryMap>* const process_maps = &process_memory->memory_maps;
if (!GetProcessMaps(pid, process_maps))
return false;
for (std::vector<MemoryMap>::iterator it = process_maps->begin();
it != process_maps->end(); ++it) {
std::vector<PageInfo>* const committed_pages = &it->committed_pages;
BitSet* const pages_bits = &it->committed_pages_bits;
GetPagesForMemoryMap(pagemap_fd.get(), *it, committed_pages, pages_bits);
SetPagesInfo(page_count_fd, page_flags_fd, committed_pages);
}
return true;
}
void KillAll(const std::vector<pid_t>& pids, int signal_number) {
for (std::vector<pid_t>::const_iterator it = pids.begin(); it != pids.end();
++it) {
kill(*it, signal_number);
}
}
void ExitWithUsage() {
LOG(ERROR) << "Usage: memdump [-a] <PID1>... <PIDN>";
exit(EXIT_FAILURE);
}
} // namespace
int main(int argc, char** argv) {
if (argc == 1)
ExitWithUsage();
const bool short_output = !strncmp(argv[1], "-a", 2);
if (short_output) {
if (argc == 2)
ExitWithUsage();
++argv;
}
std::vector<pid_t> pids;
for (const char* const* ptr = argv + 1; *ptr; ++ptr) {
pid_t pid;
if (!base::StringToInt(*ptr, &pid))
return EXIT_FAILURE;
pids.push_back(pid);
}
std::vector<ProcessMemory> processes_memory(pids.size());
{
base::ScopedFD page_count_fd(
HANDLE_EINTR(open("/proc/kpagecount", O_RDONLY)));
if (!page_count_fd.is_valid()) {
PLOG(ERROR) << "open /proc/kpagecount";
return EXIT_FAILURE;
}
base::ScopedFD page_flags_fd(open("/proc/kpageflags", O_RDONLY));
if (!page_flags_fd.is_valid()) {
PLOG(ERROR) << "open /proc/kpageflags";
return EXIT_FAILURE;
}
base::ScopedClosureRunner auto_resume_processes(
base::Bind(&KillAll, pids, SIGCONT));
KillAll(pids, SIGSTOP);
for (std::vector<pid_t>::const_iterator it = pids.begin(); it != pids.end();
++it) {
ProcessMemory* const process_memory =
&processes_memory[it - pids.begin()];
process_memory->pid = *it;
if (!CollectProcessMemoryInformation(
page_count_fd.get(), page_flags_fd.get(), process_memory)) {
return EXIT_FAILURE;
}
}
}
ClassifyPages(&processes_memory);
if (short_output)
DumpProcessesMemoryMapsInShortFormat(processes_memory);
else
DumpProcessesMemoryMapsInExtendedFormat(processes_memory);
return EXIT_SUCCESS;
}
|