summaryrefslogtreecommitdiffstats
path: root/ui/accessibility/ax_tree.cc
blob: d07f239b79d9a292b1221239067b71ee2b715e03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/accessibility/ax_tree.h"

#include <set>

#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "ui/accessibility/ax_node.h"

namespace ui {

namespace {

std::string TreeToStringHelper(AXNode* node, int indent) {
  std::string result = std::string(2 * indent, ' ');
  result += node->data().ToString() + "\n";
  for (int i = 0; i < node->child_count(); ++i)
    result += TreeToStringHelper(node->ChildAtIndex(i), indent + 1);
  return result;
}

}  // namespace

// Intermediate state to keep track of during a tree update.
struct AXTreeUpdateState {
  AXTreeUpdateState() : new_root(nullptr) {}

  // During an update, this keeps track of all nodes that have been
  // implicitly referenced as part of this update, but haven't been
  // updated yet. It's an error if there are any pending nodes at the
  // end of Unserialize.
  std::set<AXNode*> pending_nodes;

  // Keeps track of new nodes created during this update.
  std::set<AXNode*> new_nodes;

  // The new root in this update, if any.
  AXNode* new_root;
};

AXTreeDelegate::AXTreeDelegate() {
}

AXTreeDelegate::~AXTreeDelegate() {
}

AXTree::AXTree()
    : delegate_(NULL), root_(NULL) {
  AXNodeData root;
  root.id = -1;
  root.role = AX_ROLE_ROOT_WEB_AREA;

  AXTreeUpdate initial_state;
  initial_state.nodes.push_back(root);
  CHECK(Unserialize(initial_state)) << error();
}

AXTree::AXTree(const AXTreeUpdate& initial_state)
    : delegate_(NULL), root_(NULL) {
  CHECK(Unserialize(initial_state)) << error();
}

AXTree::~AXTree() {
  if (root_)
    DestroyNodeAndSubtree(root_, nullptr);
}

void AXTree::SetDelegate(AXTreeDelegate* delegate) {
  delegate_ = delegate;
}

AXNode* AXTree::GetFromId(int32 id) const {
  base::hash_map<int32, AXNode*>::const_iterator iter = id_map_.find(id);
  return iter != id_map_.end() ? iter->second : NULL;
}

bool AXTree::Unserialize(const AXTreeUpdate& update) {
  AXTreeUpdateState update_state;
  int32 old_root_id = root_ ? root_->id() : 0;

  if (update.node_id_to_clear != 0) {
    AXNode* node = GetFromId(update.node_id_to_clear);
    if (!node) {
      error_ = base::StringPrintf("Bad node_id_to_clear: %d",
                                  update.node_id_to_clear);
      return false;
    }
    if (node == root_) {
      DestroySubtree(root_, &update_state);
      root_ = NULL;
    } else {
      for (int i = 0; i < node->child_count(); ++i)
        DestroySubtree(node->ChildAtIndex(i), &update_state);
      std::vector<AXNode*> children;
      node->SwapChildren(children);
      update_state.pending_nodes.insert(node);
    }
  }

  for (size_t i = 0; i < update.nodes.size(); ++i) {
    if (!UpdateNode(update.nodes[i], &update_state))
      return false;
  }

  if (!update_state.pending_nodes.empty()) {
    error_ = "Nodes left pending by the update:";
    for (std::set<AXNode*>::iterator iter = update_state.pending_nodes.begin();
         iter != update_state.pending_nodes.end(); ++iter) {
      error_ += base::StringPrintf(" %d", (*iter)->id());
    }
    return false;
  }

  if (delegate_) {
    std::set<AXNode*>& new_nodes = update_state.new_nodes;
    std::vector<AXTreeDelegate::Change> changes;
    changes.reserve(update.nodes.size());
    for (size_t i = 0; i < update.nodes.size(); ++i) {
      AXNode* node = GetFromId(update.nodes[i].id);
      if (new_nodes.find(node) != new_nodes.end()) {
        if (new_nodes.find(node->parent()) == new_nodes.end()) {
          changes.push_back(
              AXTreeDelegate::Change(node, AXTreeDelegate::SUBTREE_CREATED));
        } else {
          changes.push_back(
              AXTreeDelegate::Change(node, AXTreeDelegate::NODE_CREATED));
        }
      } else {
        changes.push_back(
            AXTreeDelegate::Change(node, AXTreeDelegate::NODE_CHANGED));
      }
    }
    delegate_->OnAtomicUpdateFinished(
        this, root_->id() != old_root_id, changes);
  }

  return true;
}

std::string AXTree::ToString() const {
  return TreeToStringHelper(root_, 0);
}

AXNode* AXTree::CreateNode(AXNode* parent, int32 id, int32 index_in_parent) {
  AXNode* new_node = new AXNode(parent, id, index_in_parent);
  id_map_[new_node->id()] = new_node;
  if (delegate_)
    delegate_->OnNodeCreated(this, new_node);
  return new_node;
}

bool AXTree::UpdateNode(const AXNodeData& src,
                        AXTreeUpdateState* update_state) {
  // This method updates one node in the tree based on serialized data
  // received in an AXTreeUpdate. See AXTreeUpdate for pre and post
  // conditions.

  // Look up the node by id. If it's not found, then either the root
  // of the tree is being swapped, or we're out of sync with the source
  // and this is a serious error.
  AXNode* node = GetFromId(src.id);
  if (node) {
    update_state->pending_nodes.erase(node);
    node->SetData(src);
  } else {
    if (src.role != AX_ROLE_ROOT_WEB_AREA &&
        src.role != AX_ROLE_DESKTOP) {
      error_ = base::StringPrintf(
          "%d is not in the tree and not the new root", src.id);
      return false;
    }
    if (update_state->new_root) {
      error_ = "Tree update contains two new roots";
      return false;
    }

    update_state->new_root = CreateNode(NULL, src.id, 0);
    node = update_state->new_root;
    update_state->new_nodes.insert(node);
    node->SetData(src);
  }

  if (delegate_)
    delegate_->OnNodeChanged(this, node);

  // First, delete nodes that used to be children of this node but aren't
  // anymore.
  if (!DeleteOldChildren(node, src.child_ids, update_state)) {
    if (update_state->new_root)
      DestroySubtree(update_state->new_root, update_state);
    return false;
  }

  // Now build a new children vector, reusing nodes when possible,
  // and swap it in.
  std::vector<AXNode*> new_children;
  bool success = CreateNewChildVector(
      node, src.child_ids, &new_children, update_state);
  node->SwapChildren(new_children);

  // Update the root of the tree if needed.
  if ((src.role == AX_ROLE_ROOT_WEB_AREA || src.role == AX_ROLE_DESKTOP) &&
      (!root_ || root_->id() != src.id)) {
    if (root_)
      DestroySubtree(root_, update_state);
    root_ = node;
  }

  return success;
}

void AXTree::DestroySubtree(AXNode* node,
                            AXTreeUpdateState* update_state) {
  if (delegate_)
    delegate_->OnSubtreeWillBeDeleted(this, node);
  DestroyNodeAndSubtree(node, update_state);
}

void AXTree::DestroyNodeAndSubtree(AXNode* node,
                                   AXTreeUpdateState* update_state) {
  id_map_.erase(node->id());
  for (int i = 0; i < node->child_count(); ++i)
    DestroyNodeAndSubtree(node->ChildAtIndex(i), update_state);
  if (delegate_)
    delegate_->OnNodeWillBeDeleted(this, node);
  if (update_state) {
    update_state->pending_nodes.erase(node);
  }
  node->Destroy();
}

bool AXTree::DeleteOldChildren(AXNode* node,
                               const std::vector<int32>& new_child_ids,
                               AXTreeUpdateState* update_state) {
  // Create a set of child ids in |src| for fast lookup, and return false
  // if a duplicate is found;
  std::set<int32> new_child_id_set;
  for (size_t i = 0; i < new_child_ids.size(); ++i) {
    if (new_child_id_set.find(new_child_ids[i]) != new_child_id_set.end()) {
      error_ = base::StringPrintf("Node %d has duplicate child id %d",
                                  node->id(), new_child_ids[i]);
      return false;
    }
    new_child_id_set.insert(new_child_ids[i]);
  }

  // Delete the old children.
  const std::vector<AXNode*>& old_children = node->children();
  for (size_t i = 0; i < old_children.size(); ++i) {
    int old_id = old_children[i]->id();
    if (new_child_id_set.find(old_id) == new_child_id_set.end())
      DestroySubtree(old_children[i], update_state);
  }

  return true;
}

bool AXTree::CreateNewChildVector(AXNode* node,
                                  const std::vector<int32>& new_child_ids,
                                  std::vector<AXNode*>* new_children,
                                  AXTreeUpdateState* update_state) {
  bool success = true;
  for (size_t i = 0; i < new_child_ids.size(); ++i) {
    int32 child_id = new_child_ids[i];
    int32 index_in_parent = static_cast<int32>(i);
    AXNode* child = GetFromId(child_id);
    if (child) {
      if (child->parent() != node) {
        // This is a serious error - nodes should never be reparented.
        // If this case occurs, continue so this node isn't left in an
        // inconsistent state, but return failure at the end.
        error_ = base::StringPrintf(
            "Node %d reparented from %d to %d",
            child->id(),
            child->parent() ? child->parent()->id() : 0,
            node->id());
        success = false;
        continue;
      }
      child->SetIndexInParent(index_in_parent);
    } else {
      child = CreateNode(node, child_id, index_in_parent);
      update_state->pending_nodes.insert(child);
      update_state->new_nodes.insert(child);
    }
    new_children->push_back(child);
  }

  return success;
}

}  // namespace ui