1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/quad_f.h"
#include <cmath>
#include <limits>
#include "base/stringprintf.h"
namespace gfx {
QuadF::QuadF() {
}
QuadF::QuadF(const PointF& p1,
const PointF& p2,
const PointF& p3,
const PointF& p4)
: p1_(p1),
p2_(p2),
p3_(p3),
p4_(p4) {
}
QuadF::QuadF(const RectF& rect)
: p1_(rect.x(), rect.y()),
p2_(rect.right(), rect.y()),
p3_(rect.right(), rect.bottom()),
p4_(rect.x(), rect.bottom()) {
}
QuadF::~QuadF() {
}
void QuadF::operator=(const QuadF& quad) {
p1_ = quad.p1_;
p2_ = quad.p2_;
p3_ = quad.p3_;
p4_ = quad.p4_;
}
void QuadF::operator=(const RectF& rect) {
p1_ = PointF(rect.x(), rect.y());
p2_ = PointF(rect.right(), rect.y());
p3_ = PointF(rect.right(), rect.bottom());
p4_ = PointF(rect.x(), rect.bottom());
}
std::string QuadF::ToString() const {
return base::StringPrintf("%s;%s;%s;%s",
p1_.ToString().c_str(),
p2_.ToString().c_str(),
p3_.ToString().c_str(),
p4_.ToString().c_str());
}
static inline bool WithinEpsilon(float a, float b) {
return std::abs(a - b) < std::numeric_limits<float>::epsilon();
}
bool QuadF::IsRectilinear() const {
return
(WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) &&
WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) ||
(WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) &&
WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x()));
}
bool QuadF::IsCounterClockwise() const {
// This math computes the signed area of the quad. Positive area
// indicates the quad is clockwise; negative area indicates the quad is
// counter-clockwise. Note carefully: this is backwards from conventional
// math because our geometric space uses screen coordiantes with y-axis
// pointing downards.
// Reference: http://mathworld.wolfram.com/PolygonArea.html
// Up-cast to double so this cannot overflow.
double determinant1 = static_cast<double>(p1_.x()) * p2_.y()
- static_cast<double>(p2_.x()) * p1_.y();
double determinant2 = static_cast<double>(p2_.x()) * p3_.y()
- static_cast<double>(p3_.x()) * p2_.y();
double determinant3 = static_cast<double>(p3_.x()) * p4_.y()
- static_cast<double>(p4_.x()) * p3_.y();
double determinant4 = static_cast<double>(p4_.x()) * p1_.y()
- static_cast<double>(p1_.x()) * p4_.y();
return determinant1 + determinant2 + determinant3 + determinant4 < 0;
}
static inline bool PointIsInTriangle(const PointF& point,
const PointF& r1,
const PointF& r2,
const PointF& r3) {
// Compute the barycentric coordinates of |point| relative to the triangle
// (r1, r2, r3). This algorithm comes from Christer Ericson's Real-Time
// Collision Detection.
Vector2dF v0 = r2 - r1;
Vector2dF v1 = r3 - r1;
Vector2dF v2 = point - r1;
double dot00 = DotProduct(v0, v0);
double dot01 = DotProduct(v0, v1);
double dot11 = DotProduct(v1, v1);
double dot20 = DotProduct(v2, v0);
double dot21 = DotProduct(v2, v1);
double denom = dot00 * dot11 - dot01 * dot01;
double v = (dot11 * dot20 - dot01 * dot21) / denom;
double w = (dot00 * dot21 - dot01 * dot20) / denom;
double u = 1 - v - w;
// Use the barycentric coordinates to test if |point| is inside the
// triangle (r1, r2, r2).
return (v >= 0) && (w >= 0) && (u >= 0);
}
bool QuadF::Contains(const PointF& point) const {
return PointIsInTriangle(point, p1_, p2_, p3_)
|| PointIsInTriangle(point, p1_, p3_, p4_);
}
RectF QuadF::BoundingBox() const {
float rl = std::min(std::min(p1_.x(), p2_.x()), std::min(p3_.x(), p4_.x()));
float rr = std::max(std::max(p1_.x(), p2_.x()), std::max(p3_.x(), p4_.x()));
float rt = std::min(std::min(p1_.y(), p2_.y()), std::min(p3_.y(), p4_.y()));
float rb = std::max(std::max(p1_.y(), p2_.y()), std::max(p3_.y(), p4_.y()));
return RectF(rl, rt, rr - rl, rb - rt);
}
void QuadF::Scale(float x_scale, float y_scale) {
p1_.Scale(x_scale, y_scale);
p2_.Scale(x_scale, y_scale);
p3_.Scale(x_scale, y_scale);
p4_.Scale(x_scale, y_scale);
}
void QuadF::operator+=(const Vector2dF& rhs) {
p1_ += rhs;
p2_ += rhs;
p3_ += rhs;
p4_ += rhs;
}
void QuadF::operator-=(const Vector2dF& rhs) {
p1_ -= rhs;
p2_ -= rhs;
p3_ -= rhs;
p4_ -= rhs;
}
QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result += rhs;
return result;
}
QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result -= rhs;
return result;
}
} // namespace gfx
|