1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_GFX_QUAD_F_H_
#define UI_GFX_QUAD_F_H_
#include <cmath>
#include <string>
#include "ui/base/ui_export.h"
#include "ui/gfx/point_f.h"
#include "ui/gfx/rect_f.h"
namespace gfx {
// A Quad is defined by four corners, allowing it to have edges that are not
// axis-aligned, unlike a Rect.
class UI_EXPORT QuadF {
public:
QuadF() {}
QuadF(const PointF& p1, const PointF& p2, const PointF& p3, const PointF& p4)
: p1_(p1),
p2_(p2),
p3_(p3),
p4_(p4) {}
explicit QuadF(const RectF& rect)
: p1_(rect.x(), rect.y()),
p2_(rect.right(), rect.y()),
p3_(rect.right(), rect.bottom()),
p4_(rect.x(), rect.bottom()) {}
void operator=(const RectF& rect);
void set_p1(const PointF& p) { p1_ = p; }
void set_p2(const PointF& p) { p2_ = p; }
void set_p3(const PointF& p) { p3_ = p; }
void set_p4(const PointF& p) { p4_ = p; }
const PointF& p1() const { return p1_; }
const PointF& p2() const { return p2_; }
const PointF& p3() const { return p3_; }
const PointF& p4() const { return p4_; }
// Returns true if the quad is an axis-aligned rectangle.
bool IsRectilinear() const;
// Returns true if the points of the quad are in counter-clockwise order. This
// assumes that the quad is convex, and that no three points are collinear.
bool IsCounterClockwise() const;
// Returns true if the |point| is contained within the quad, or lies on on
// edge of the quad.
bool Contains(const gfx::PointF& point) const;
// Returns a rectangle that bounds the four points of the quad. The points of
// the quad may lie on the right/bottom edge of the resulting rectangle,
// rather than being strictly inside it.
RectF BoundingBox() const {
float rl = std::min(std::min(p1_.x(), p2_.x()), std::min(p3_.x(), p4_.x()));
float rr = std::max(std::max(p1_.x(), p2_.x()), std::max(p3_.x(), p4_.x()));
float rt = std::min(std::min(p1_.y(), p2_.y()), std::min(p3_.y(), p4_.y()));
float rb = std::max(std::max(p1_.y(), p2_.y()), std::max(p3_.y(), p4_.y()));
return RectF(rl, rt, rr - rl, rb - rt);
}
// Add a vector to the quad, offseting each point in the quad by the vector.
void operator+=(const Vector2dF& rhs);
// Subtract a vector from the quad, offseting each point in the quad by the
// inverse of the vector.
void operator-=(const Vector2dF& rhs);
// Scale each point in the quad by the |scale| factor.
void Scale(float scale) { Scale(scale, scale); }
// Scale each point in the quad by the scale factors along each axis.
void Scale(float x_scale, float y_scale);
// Returns a string representation of quad.
std::string ToString() const;
private:
PointF p1_;
PointF p2_;
PointF p3_;
PointF p4_;
};
inline bool operator==(const QuadF& lhs, const QuadF& rhs) {
return
lhs.p1() == rhs.p1() && lhs.p2() == rhs.p2() &&
lhs.p3() == rhs.p3() && lhs.p4() == rhs.p4();
}
inline bool operator!=(const QuadF& lhs, const QuadF& rhs) {
return !(lhs == rhs);
}
// Add a vector to a quad, offseting each point in the quad by the vector.
UI_EXPORT QuadF operator+(const QuadF& lhs, const Vector2dF& rhs);
// Subtract a vector from a quad, offseting each point in the quad by the
// inverse of the vector.
UI_EXPORT QuadF operator-(const QuadF& lhs, const Vector2dF& rhs);
} // namespace gfx
#endif // UI_GFX_QUAD_F_H_
|