1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/skbitmap_operations.h"
#include <algorithm>
#include <string.h>
#include "base/logging.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkCanvas.h"
#include "third_party/skia/include/core/SkColorPriv.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"
// static
SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
SkAutoLockPixels lock_image(image);
SkBitmap inverted;
inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(),
0);
inverted.allocPixels();
inverted.eraseARGB(0, 0, 0, 0);
for (int y = 0; y < image.height(); ++y) {
uint32* image_row = image.getAddr32(0, y);
uint32* dst_row = inverted.getAddr32(0, y);
for (int x = 0; x < image.width(); ++x) {
uint32 image_pixel = image_row[x];
dst_row[x] = (image_pixel & 0xFF000000) |
(0x00FFFFFF - (image_pixel & 0x00FFFFFF));
}
}
return inverted;
}
// static
SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
const SkBitmap& second) {
DCHECK(first.width() == second.width());
DCHECK(first.height() == second.height());
DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
SkAutoLockPixels lock_first(first);
SkAutoLockPixels lock_second(second);
SkBitmap superimposed;
superimposed.setConfig(SkBitmap::kARGB_8888_Config,
first.width(), first.height());
superimposed.allocPixels();
superimposed.eraseARGB(0, 0, 0, 0);
SkCanvas canvas(superimposed);
SkRect rect;
rect.fLeft = 0;
rect.fTop = 0;
rect.fRight = SkIntToScalar(first.width());
rect.fBottom = SkIntToScalar(first.height());
canvas.drawBitmapRect(first, NULL, rect);
canvas.drawBitmapRect(second, NULL, rect);
return superimposed;
}
// static
SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
const SkBitmap& second,
double alpha) {
DCHECK((alpha >= 0) && (alpha <= 1));
DCHECK(first.width() == second.width());
DCHECK(first.height() == second.height());
DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
// Optimize for case where we won't need to blend anything.
static const double alpha_min = 1.0 / 255;
static const double alpha_max = 254.0 / 255;
if (alpha < alpha_min)
return first;
else if (alpha > alpha_max)
return second;
SkAutoLockPixels lock_first(first);
SkAutoLockPixels lock_second(second);
SkBitmap blended;
blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(),
0);
blended.allocPixels();
blended.eraseARGB(0, 0, 0, 0);
double first_alpha = 1 - alpha;
for (int y = 0; y < first.height(); ++y) {
uint32* first_row = first.getAddr32(0, y);
uint32* second_row = second.getAddr32(0, y);
uint32* dst_row = blended.getAddr32(0, y);
for (int x = 0; x < first.width(); ++x) {
uint32 first_pixel = first_row[x];
uint32 second_pixel = second_row[x];
int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
(SkColorGetA(second_pixel) * alpha));
int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
(SkColorGetR(second_pixel) * alpha));
int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
(SkColorGetG(second_pixel) * alpha));
int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
(SkColorGetB(second_pixel) * alpha));
dst_row[x] = SkColorSetARGB(a, r, g, b);
}
}
return blended;
}
// static
SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
const SkBitmap& alpha) {
DCHECK(rgb.width() == alpha.width());
DCHECK(rgb.height() == alpha.height());
DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config);
DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config);
SkBitmap masked;
masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0);
masked.allocPixels();
masked.eraseARGB(0, 0, 0, 0);
SkAutoLockPixels lock_rgb(rgb);
SkAutoLockPixels lock_alpha(alpha);
SkAutoLockPixels lock_masked(masked);
for (int y = 0; y < masked.height(); ++y) {
uint32* rgb_row = rgb.getAddr32(0, y);
uint32* alpha_row = alpha.getAddr32(0, y);
uint32* dst_row = masked.getAddr32(0, y);
for (int x = 0; x < masked.width(); ++x) {
SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x]));
dst_row[x] = SkColorSetARGB(alpha,
SkAlphaMul(SkColorGetR(rgb_pixel), alpha),
SkAlphaMul(SkColorGetG(rgb_pixel), alpha),
SkAlphaMul(SkColorGetB(rgb_pixel), alpha));
}
}
return masked;
}
// static
SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
const SkBitmap& image,
const SkBitmap& mask) {
DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
DCHECK(mask.config() == SkBitmap::kARGB_8888_Config);
SkBitmap background;
background.setConfig(
SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0);
background.allocPixels();
double bg_a = SkColorGetA(color);
double bg_r = SkColorGetR(color);
double bg_g = SkColorGetG(color);
double bg_b = SkColorGetB(color);
SkAutoLockPixels lock_mask(mask);
SkAutoLockPixels lock_image(image);
SkAutoLockPixels lock_background(background);
for (int y = 0; y < mask.height(); ++y) {
uint32* dst_row = background.getAddr32(0, y);
uint32* image_row = image.getAddr32(0, y % image.height());
uint32* mask_row = mask.getAddr32(0, y);
for (int x = 0; x < mask.width(); ++x) {
uint32 image_pixel = image_row[x % image.width()];
double img_a = SkColorGetA(image_pixel);
double img_r = SkColorGetR(image_pixel);
double img_g = SkColorGetG(image_pixel);
double img_b = SkColorGetB(image_pixel);
double img_alpha = static_cast<double>(img_a) / 255.0;
double img_inv = 1 - img_alpha;
double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
dst_row[x] = SkColorSetARGB(
static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
}
}
return background;
}
namespace {
namespace HSLShift {
// TODO(viettrungluu): Some things have yet to be optimized at all.
// Notes on and conventions used in the following code
//
// Conventions:
// - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
// - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
// - variables derived from S, L shift parameters: |sdec| and |sinc| for S
// increase and decrease factors, |ldec| and |linc| for L (see also below)
//
// To try to optimize HSL shifts, we do several things:
// - Avoid unpremultiplying (then processing) then premultiplying. This means
// that R, G, B values (and also L, but not H and S) should be treated as
// having a range of 0..A (where A is alpha).
// - Do things in integer/fixed-point. This avoids costly conversions between
// floating-point and integer, though I should study the tradeoff more
// carefully (presumably, at some point of processing complexity, converting
// and processing using simpler floating-point code will begin to win in
// performance). Also to be studied is the speed/type of floating point
// conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
//
// Conventions for fixed-point arithmetic
// - Each function has a constant denominator (called |den|, which should be a
// power of 2), appropriate for the computations done in that function.
// - A value |x| is then typically represented by a numerator, named |x_num|,
// so that its actual value is |x_num / den| (casting to floating-point
// before division).
// - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
// den| (casting appropriately).
// - When necessary, a value |x| may also be represented as a numerator over
// the denominator squared (set |den2 = den * den|). In such a case, the
// corresponding variable is called |x_num2| (so that its actual value is
// |x_num^2 / den2|.
// - The representation of the product of |x| and |y| is be called |x_y_num| if
// |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
// the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
// Routine used to process a line; typically specialized for specific kinds of
// HSL shifts (to optimize).
typedef void (*LineProcessor)(color_utils::HSL,
const SkPMColor*,
SkPMColor*,
int width);
enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
// Epsilon used to judge when shift values are close enough to various critical
// values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
// be small enough, but let's play it safe>
const double epsilon = 0.0005;
// Line processor: default/universal (i.e., old-school).
void LineProcDefault(color_utils::HSL hsl_shift, const SkPMColor* in,
SkPMColor* out, int width) {
for (int x = 0; x < width; x++) {
out[x] = SkPreMultiplyColor(color_utils::HSLShift(
SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
}
}
// Line processor: no-op (i.e., copy).
void LineProcCopy(color_utils::HSL hsl_shift, const SkPMColor* in,
SkPMColor* out, int width) {
DCHECK(hsl_shift.h < 0);
DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
}
// Line processor: H no-op, S no-op, L decrease.
void LineProcHnopSnopLdec(color_utils::HSL hsl_shift, const SkPMColor* in,
SkPMColor* out, int width) {
const uint32_t den = 65536;
DCHECK(hsl_shift.h < 0);
DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
for (int x = 0; x < width; x++) {
uint32_t a = SkGetPackedA32(in[x]);
uint32_t r = SkGetPackedR32(in[x]);
uint32_t g = SkGetPackedG32(in[x]);
uint32_t b = SkGetPackedB32(in[x]);
r = r * ldec_num / den;
g = g * ldec_num / den;
b = b * ldec_num / den;
out[x] = SkPackARGB32(a, r, g, b);
}
}
// Line processor: H no-op, S no-op, L increase.
void LineProcHnopSnopLinc(color_utils::HSL hsl_shift, const SkPMColor* in,
SkPMColor* out, int width) {
const uint32_t den = 65536;
DCHECK(hsl_shift.h < 0);
DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
for (int x = 0; x < width; x++) {
uint32_t a = SkGetPackedA32(in[x]);
uint32_t r = SkGetPackedR32(in[x]);
uint32_t g = SkGetPackedG32(in[x]);
uint32_t b = SkGetPackedB32(in[x]);
r += (a - r) * linc_num / den;
g += (a - g) * linc_num / den;
b += (a - b) * linc_num / den;
out[x] = SkPackARGB32(a, r, g, b);
}
}
// Saturation changes modifications in RGB
//
// (Note that as a further complication, the values we deal in are
// premultiplied, so R/G/B values must be in the range 0..A. For mathematical
// purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
// generality, assume that R/G/B values are in the range 0..1.)
//
// Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
// (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
//
// For H to remain constant, first, the (numerical) order of R/G/B (from
// smallest to largest) must remain the same. Second, all the ratios
// (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
// course, if Max = Min, then S = 0 and no saturation change is well-defined,
// since H is not well-defined).
//
// Let C_max be a colour with value Max, C_min be one with value Min, and C_med
// the remaining colour. Increasing saturation (to the maximum) is accomplished
// by increasing the value of C_max while simultaneously decreasing C_min and
// changing C_med so that the ratios are maintained; for the latter, it suffices
// to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
// (Med-Min)/(Max-Min)).
// Line processor: H no-op, S decrease, L no-op.
void LineProcHnopSdecLnop(color_utils::HSL hsl_shift, const SkPMColor* in,
SkPMColor* out, int width) {
DCHECK(hsl_shift.h < 0);
DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
const int32_t denom = 65536;
int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
for (int x = 0; x < width; x++) {
int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
int32_t vmax, vmin;
if (r > g) { // This uses 3 compares rather than 4.
vmax = std::max(r, b);
vmin = std::min(g, b);
} else {
vmax = std::max(g, b);
vmin = std::min(r, b);
}
// Use denom * L to avoid rounding.
int32_t denom_l = (vmax + vmin) * (denom / 2);
int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
r = (denom_l + r * s_numer - s_numer_l) / denom;
g = (denom_l + g * s_numer - s_numer_l) / denom;
b = (denom_l + b * s_numer - s_numer_l) / denom;
out[x] = SkPackARGB32(a, r, g, b);
}
}
// Line processor: H no-op, S decrease, L decrease.
void LineProcHnopSdecLdec(color_utils::HSL hsl_shift, const SkPMColor* in,
SkPMColor* out, int width) {
DCHECK(hsl_shift.h < 0);
DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
// Can't be too big since we need room for denom*denom and a bit for sign.
const int32_t denom = 1024;
int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
for (int x = 0; x < width; x++) {
int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
int32_t vmax, vmin;
if (r > g) { // This uses 3 compares rather than 4.
vmax = std::max(r, b);
vmin = std::min(g, b);
} else {
vmax = std::max(g, b);
vmin = std::min(r, b);
}
// Use denom * L to avoid rounding.
int32_t denom_l = (vmax + vmin) * (denom / 2);
int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
out[x] = SkPackARGB32(a, r, g, b);
}
}
// Line processor: H no-op, S decrease, L increase.
void LineProcHnopSdecLinc(color_utils::HSL hsl_shift, const SkPMColor* in,
SkPMColor* out, int width) {
DCHECK(hsl_shift.h < 0);
DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
// Can't be too big since we need room for denom*denom and a bit for sign.
const int32_t denom = 1024;
int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
for (int x = 0; x < width; x++) {
int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
int32_t vmax, vmin;
if (r > g) { // This uses 3 compares rather than 4.
vmax = std::max(r, b);
vmin = std::min(g, b);
} else {
vmax = std::max(g, b);
vmin = std::min(r, b);
}
// Use denom * L to avoid rounding.
int32_t denom_l = (vmax + vmin) * (denom / 2);
int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
r = denom_l + r * s_numer - s_numer_l;
g = denom_l + g * s_numer - s_numer_l;
b = denom_l + b * s_numer - s_numer_l;
r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
out[x] = SkPackARGB32(a, r, g, b);
}
}
const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
{ // H: kOpHNone
{ // S: kOpSNone
LineProcCopy, // L: kOpLNone
LineProcHnopSnopLdec, // L: kOpLDec
LineProcHnopSnopLinc // L: kOpLInc
},
{ // S: kOpSDec
LineProcHnopSdecLnop, // L: kOpLNone
LineProcHnopSdecLdec, // L: kOpLDec
LineProcHnopSdecLinc // L: kOpLInc
},
{ // S: kOpSInc
LineProcDefault, // L: kOpLNone
LineProcDefault, // L: kOpLDec
LineProcDefault // L: kOpLInc
}
},
{ // H: kOpHShift
{ // S: kOpSNone
LineProcDefault, // L: kOpLNone
LineProcDefault, // L: kOpLDec
LineProcDefault // L: kOpLInc
},
{ // S: kOpSDec
LineProcDefault, // L: kOpLNone
LineProcDefault, // L: kOpLDec
LineProcDefault // L: kOpLInc
},
{ // S: kOpSInc
LineProcDefault, // L: kOpLNone
LineProcDefault, // L: kOpLDec
LineProcDefault // L: kOpLInc
}
}
};
} // namespace HSLShift
} // namespace
// static
SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
const SkBitmap& bitmap,
const color_utils::HSL& hsl_shift) {
// Default to NOPs.
HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
H_op = HSLShift::kOpHShift;
// Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
S_op = HSLShift::kOpSDec;
else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
S_op = HSLShift::kOpSInc;
// Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
L_op = HSLShift::kOpLDec;
else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
L_op = HSLShift::kOpLInc;
HSLShift::LineProcessor line_proc =
HSLShift::kLineProcessors[H_op][S_op][L_op];
DCHECK(bitmap.empty() == false);
DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
SkBitmap shifted;
shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
bitmap.height(), 0);
shifted.allocPixels();
shifted.eraseARGB(0, 0, 0, 0);
shifted.setIsOpaque(false);
SkAutoLockPixels lock_bitmap(bitmap);
SkAutoLockPixels lock_shifted(shifted);
// Loop through the pixels of the original bitmap.
for (int y = 0; y < bitmap.height(); ++y) {
SkPMColor* pixels = bitmap.getAddr32(0, y);
SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
(*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
}
return shifted;
}
// static
SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
int src_x, int src_y,
int dst_w, int dst_h) {
DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config);
SkBitmap cropped;
cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0);
cropped.allocPixels();
cropped.eraseARGB(0, 0, 0, 0);
SkAutoLockPixels lock_source(source);
SkAutoLockPixels lock_cropped(cropped);
// Loop through the pixels of the original bitmap.
for (int y = 0; y < dst_h; ++y) {
int y_pix = (src_y + y) % source.height();
while (y_pix < 0)
y_pix += source.height();
uint32* source_row = source.getAddr32(0, y_pix);
uint32* dst_row = cropped.getAddr32(0, y);
for (int x = 0; x < dst_w; ++x) {
int x_pix = (src_x + x) % source.width();
while (x_pix < 0)
x_pix += source.width();
dst_row[x] = source_row[x_pix];
}
}
return cropped;
}
// static
SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
int min_w, int min_h) {
if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
(min_w < 0) || (min_h < 0))
return bitmap;
// Since bitmaps are refcounted, this copy will be fast.
SkBitmap current = bitmap;
while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
(current.width() > 1) && (current.height() > 1))
current = DownsampleByTwo(current);
return current;
}
// static
SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
// Handle the nop case.
if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
return bitmap;
SkBitmap result;
result.setConfig(SkBitmap::kARGB_8888_Config,
(bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
result.allocPixels();
SkAutoLockPixels lock(bitmap);
for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
for (int dest_x = 0; dest_x < result.width(); ++dest_x) {
// This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
// clever in that it does two channels at once: alpha and green ("ag")
// and red and blue ("rb"). Each channel gets averaged across 4 pixels
// to get the result.
int src_x = dest_x << 1;
int src_y = dest_y << 1;
const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y);
SkPMColor tmp, ag, rb;
// Top left pixel of the 2x2 block.
tmp = *cur_src;
ag = (tmp >> 8) & 0xFF00FF;
rb = tmp & 0xFF00FF;
if (src_x < (bitmap.width() - 1))
++cur_src;
// Top right pixel of the 2x2 block.
tmp = *cur_src;
ag += (tmp >> 8) & 0xFF00FF;
rb += tmp & 0xFF00FF;
if (src_y < (bitmap.height() - 1))
cur_src = bitmap.getAddr32(src_x, src_y + 1);
else
cur_src = bitmap.getAddr32(src_x, src_y); // Move back to the first.
// Bottom left pixel of the 2x2 block.
tmp = *cur_src;
ag += (tmp >> 8) & 0xFF00FF;
rb += tmp & 0xFF00FF;
if (src_x < (bitmap.width() - 1))
++cur_src;
// Bottom right pixel of the 2x2 block.
tmp = *cur_src;
ag += (tmp >> 8) & 0xFF00FF;
rb += tmp & 0xFF00FF;
// Put the channels back together, dividing each by 4 to get the average.
// |ag| has the alpha and green channels shifted right by 8 bits from
// there they should end up, so shifting left by 6 gives them in the
// correct position divided by 4.
*result.getAddr32(dest_x, dest_y) =
((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
}
}
return result;
}
// static
SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
if (bitmap.isNull())
return bitmap;
if (bitmap.isOpaque())
return bitmap;
SkBitmap opaque_bitmap;
opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height());
opaque_bitmap.allocPixels();
{
SkAutoLockPixels bitmap_lock(bitmap);
SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
for (int y = 0; y < opaque_bitmap.height(); y++) {
for (int x = 0; x < opaque_bitmap.width(); x++) {
uint32 src_pixel = *bitmap.getAddr32(x, y);
uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
*dst_pixel = unmultiplied;
}
}
}
opaque_bitmap.setIsOpaque(true);
return opaque_bitmap;
}
// static
SkBitmap SkBitmapOperations::CreateTransposedBtmap(const SkBitmap& image) {
DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
SkAutoLockPixels lock_image(image);
SkBitmap transposed;
transposed.setConfig(
SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0);
transposed.allocPixels();
transposed.eraseARGB(0, 0, 0, 0);
for (int y = 0; y < image.height(); ++y) {
uint32* image_row = image.getAddr32(0, y);
for (int x = 0; x < image.width(); ++x) {
uint32* dst = transposed.getAddr32(y, x);
*dst = image_row[x];
}
}
return transposed;
}
|