summaryrefslogtreecommitdiffstats
path: root/ui/surface/accelerated_surface_transformer_win.cc
blob: 0706a1ad4e53b6ddf15ab45f62d2dd37837d7434 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/surface/accelerated_surface_transformer_win.h"

#include <vector>

#include "accelerated_surface_transformer_win_hlsl_compiled.h"
#include "base/debug/trace_event.h"
#include "base/memory/ref_counted.h"
#include "base/metrics/histogram.h"
#include "base/single_thread_task_runner.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/win/scoped_comptr.h"
#include "ui/gfx/native_widget_types.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/size.h"
#include "ui/surface/d3d9_utils_win.h"
#include "ui/surface/surface_export.h"

using base::win::ScopedComPtr;
using std::vector;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kPsConvertRGBtoY8UV44;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kPsConvertUV44toU2V2;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kPsOneTexture;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kVsFetch2Pixels;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kVsFetch4Pixels;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kVsOneTexture;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kVsFetch4PixelsScale2;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kPsConvertRGBtoY;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kPsConvertRGBtoU;
using ui_surface::AcceleratedSurfaceTransformerWinHLSL::kPsConvertRGBtoV;

namespace d3d_utils = ui_surface_d3d9_utils;

namespace {

struct Vertex {
  float x, y, z, w;
  float u, v;
};

const static D3DVERTEXELEMENT9 g_vertexElements[] = {
  { 0, 0, D3DDECLTYPE_FLOAT4, 0, D3DDECLUSAGE_POSITION, 0 },
  { 0, 16, D3DDECLTYPE_FLOAT2, 0, D3DDECLUSAGE_TEXCOORD, 0 },
  D3DDECL_END()
};

class ScopedRenderTargetRestorer {
 public:
  ScopedRenderTargetRestorer(IDirect3DDevice9* device,
                             int render_target_id)
    : device_(device),
      target_id_(render_target_id) {
    device_->GetRenderTarget(target_id_, original_render_target_.Receive());
  }
  ~ScopedRenderTargetRestorer() {
    device_->SetRenderTarget(target_id_, original_render_target_);
  }
 private:
  ScopedComPtr<IDirect3DDevice9> device_;
  int target_id_;
  ScopedComPtr<IDirect3DSurface9> original_render_target_;
};

// Calculate the number necessary to transform |src_subrect| into |dst_size|
// by repeating downsampling of the image of |src_subrect| by a factor no more
// than 2.
int GetResampleCount(const gfx::Rect& src_subrect,
                     const gfx::Size& dst_size) {
  // At least one copy is required, since the back buffer itself is not
  // lockable.
  int min_resample_count = 1;
  int width_count = 0;
  int width = src_subrect.width();
  while (width > dst_size.width()) {
    ++width_count;
    width >>= 1;
  }
  int height_count = 0;
  int height = src_subrect.height();
  while (height > dst_size.height()) {
    ++height_count;
    height >>= 1;
  }
  return std::max(std::max(width_count, height_count),
                  min_resample_count);
}

// Returns half the size of |size| no smaller than |min_size|.
gfx::Size GetHalfSizeNoLessThan(const gfx::Size& size,
                                const gfx::Size& min_size) {
  return gfx::Size(std::max(min_size.width(), size.width() / 2),
                   std::max(min_size.height(), size.height() / 2));
}

}  // namespace

AcceleratedSurfaceTransformer::AcceleratedSurfaceTransformer()
    : device_supports_multiple_render_targets_(false),
      vertex_shader_sources_(),
      pixel_shader_sources_() {

  // Associate passes with actual shader programs.
  vertex_shader_sources_[ONE_TEXTURE] = kVsOneTexture;
  pixel_shader_sources_[ONE_TEXTURE] = kPsOneTexture;

  vertex_shader_sources_[RGB_TO_YV12_FAST__PASS_1_OF_2] = kVsFetch4Pixels;
  pixel_shader_sources_[RGB_TO_YV12_FAST__PASS_1_OF_2] = kPsConvertRGBtoY8UV44;

  vertex_shader_sources_[RGB_TO_YV12_FAST__PASS_2_OF_2] = kVsFetch2Pixels;
  pixel_shader_sources_[RGB_TO_YV12_FAST__PASS_2_OF_2] = kPsConvertUV44toU2V2;

  vertex_shader_sources_[RGB_TO_YV12_SLOW__PASS_1_OF_3] = kVsFetch4Pixels;
  pixel_shader_sources_[RGB_TO_YV12_SLOW__PASS_1_OF_3] = kPsConvertRGBtoY;

  vertex_shader_sources_[RGB_TO_YV12_SLOW__PASS_2_OF_3] = kVsFetch4PixelsScale2;
  pixel_shader_sources_[RGB_TO_YV12_SLOW__PASS_2_OF_3] = kPsConvertRGBtoU;

  vertex_shader_sources_[RGB_TO_YV12_SLOW__PASS_3_OF_3] = kVsFetch4PixelsScale2;
  pixel_shader_sources_[RGB_TO_YV12_SLOW__PASS_3_OF_3] = kPsConvertRGBtoV;

  COMPILE_ASSERT(NUM_SHADERS == 6, must_initialize_shader_sources);
}

bool AcceleratedSurfaceTransformer::Init(IDirect3DDevice9* device) {
  bool result = DoInit(device);
  if (!result) {
    ReleaseAll();
  }
  return result;
}

bool AcceleratedSurfaceTransformer::DoInit(IDirect3DDevice9* device) {
  device_ = device;

  {
    D3DCAPS9 caps;
    HRESULT hr = device->GetDeviceCaps(&caps);
    if (FAILED(hr))
      return false;

    device_supports_multiple_render_targets_ = (caps.NumSimultaneousRTs >= 2);

    // Log statistics about which paths we take.
    UMA_HISTOGRAM_BOOLEAN("GPU.AcceleratedSurfaceTransformerCanUseMRT",
                          device_supports_multiple_render_targets());
  }

  // Force compilation of all shaders that could be used on this GPU.
  if (!CompileShaderCombo(ONE_TEXTURE))
    return false;

  if (device_supports_multiple_render_targets()) {
    if (!CompileShaderCombo(RGB_TO_YV12_FAST__PASS_1_OF_2) ||
        !CompileShaderCombo(RGB_TO_YV12_FAST__PASS_2_OF_2)) {
      return false;
    }
  } else {
    if (!CompileShaderCombo(RGB_TO_YV12_SLOW__PASS_1_OF_3) ||
        !CompileShaderCombo(RGB_TO_YV12_SLOW__PASS_2_OF_3) ||
        !CompileShaderCombo(RGB_TO_YV12_SLOW__PASS_3_OF_3)) {
      return false;
    }
  }
  COMPILE_ASSERT(NUM_SHADERS == 6, must_compile_at_doinit);

  ScopedComPtr<IDirect3DVertexDeclaration9> vertex_declaration;
  HRESULT hr = device_->CreateVertexDeclaration(g_vertexElements,
                                                vertex_declaration.Receive());
  if (FAILED(hr))
    return false;
  hr = device_->SetVertexDeclaration(vertex_declaration);
  if (FAILED(hr))
    return false;

  return true;
}

bool AcceleratedSurfaceTransformer::CompileShaderCombo(
    ShaderCombo shader) {
  if (!vertex_shaders_[shader]) {
    HRESULT hr = device_->CreateVertexShader(
        reinterpret_cast<const DWORD*>(vertex_shader_sources_[shader]),
        vertex_shaders_[shader].Receive());

    if (FAILED(hr))
      return false;

    for (int i = 0; i < NUM_SHADERS; ++i) {
      if (vertex_shader_sources_[i] == vertex_shader_sources_[shader] &&
          i != shader) {
        vertex_shaders_[i] = vertex_shaders_[shader];
      }
    }
  }

  if (!pixel_shaders_[shader]) {
    HRESULT hr = device_->CreatePixelShader(
        reinterpret_cast<const DWORD*>(pixel_shader_sources_[shader]),
        pixel_shaders_[shader].Receive());

    if (FAILED(hr))
      return false;

    for (int i = 0; i < NUM_SHADERS; ++i) {
      if (pixel_shader_sources_[i] == pixel_shader_sources_[shader] &&
          i != shader) {
        pixel_shaders_[i] = pixel_shaders_[shader];
      }
    }
  }

  return true;
}

void AcceleratedSurfaceTransformer::ReleaseAll() {
  for (int i = 0; i < NUM_SHADERS; i++) {
    vertex_shaders_[i] = NULL;
    pixel_shaders_[i] = NULL;
  }

  user_scratch_texture_ = NULL;
  uv_scratch_texture_ = NULL;
  y_scratch_surface_ = NULL;
  u_scratch_surface_ = NULL;
  v_scratch_surface_ = NULL;
  for (int i = 0; i < arraysize(scaler_scratch_surfaces_); i++)
    scaler_scratch_surfaces_[i] = NULL;

  device_ = NULL;
}
void AcceleratedSurfaceTransformer::DetachAll() {
  for (int i = 0; i < NUM_SHADERS; i++) {
    vertex_shaders_[i].Detach();
    pixel_shaders_[i].Detach();
  }

  user_scratch_texture_.Detach();
  uv_scratch_texture_.Detach();
  y_scratch_surface_.Detach();
  u_scratch_surface_.Detach();
  v_scratch_surface_.Detach();
  for (int i = 0; i < arraysize(scaler_scratch_surfaces_); i++)
    scaler_scratch_surfaces_[i].Detach();

  device_.Detach();
}

bool AcceleratedSurfaceTransformer::CopyInverted(
    IDirect3DTexture9* src_texture,
    IDirect3DSurface9* dst_surface,
    const gfx::Size& dst_size) {
  return CopyWithTextureScale(src_texture, dst_surface, dst_size, 1.0f, -1.0f);
}

bool AcceleratedSurfaceTransformer::Copy(
    IDirect3DTexture9* src_texture,
    IDirect3DSurface9* dst_surface,
    const gfx::Size& dst_size) {
  return CopyWithTextureScale(src_texture, dst_surface, dst_size, 1.0f, 1.0f);
}

bool AcceleratedSurfaceTransformer::CopyWithTextureScale(
    IDirect3DTexture9* src_texture,
    IDirect3DSurface9* dst_surface,
    const gfx::Size& dst_size,
    float texture_scale_x,
    float texture_scale_y) {

  if (!SetShaderCombo(ONE_TEXTURE))
    return false;

  // Set the kTextureScale vertex shader constant, which is assigned to
  // register 1.
  float texture_scale[4] = {texture_scale_x, texture_scale_y, 0, 0};
  device()->SetVertexShaderConstantF(1, texture_scale, 1);

  ScopedRenderTargetRestorer render_target_restorer(device(), 0);
  device()->SetRenderTarget(0, dst_surface);
  device()->SetTexture(0, src_texture);

  D3DVIEWPORT9 viewport = {
    0, 0,
    dst_size.width(), dst_size.height(),
    0, 1
  };
  device()->SetViewport(&viewport);

  if (d3d_utils::GetSize(src_texture) == dst_size) {
    device()->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
    device()->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);
  } else {
    device()->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
    device()->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
  }
  device()->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
  device()->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);

  DrawScreenAlignedQuad(dst_size);

  // Clear surface references.
  device()->SetTexture(0, NULL);
  return true;
}

void AcceleratedSurfaceTransformer::DrawScreenAlignedQuad(
    const gfx::Size& size) {
  const float target_size[4] = { size.width(), size.height(), 0, 0};

  // Set the uniform shader constant |kRenderTargetSize|, which is bound
  // to register c0.
  device()->SetVertexShaderConstantF(0, target_size, 1);

  // We always send down the same vertices. The vertex program will take
  // care of doing resolution-dependent position adjustment.
  Vertex vertices[] = {
    { -1, +1, 0.5f, 1, 0, 0 },
    { +1, +1, 0.5f, 1, 1, 0 },
    { +1, -1, 0.5f, 1, 1, 1 },
    { -1, -1, 0.5f, 1, 0, 1 }
  };

  device()->BeginScene();
  device()->DrawPrimitiveUP(D3DPT_TRIANGLEFAN,
                            2,
                            vertices,
                            sizeof(vertices[0]));
  device()->EndScene();

}

bool AcceleratedSurfaceTransformer::GetIntermediateTexture(
    const gfx::Size& size,
    IDirect3DTexture9** texture,
    IDirect3DSurface9** texture_level_zero) {
  if (!d3d_utils::CreateOrReuseRenderTargetTexture(device(),
                                                   size,
                                                   &user_scratch_texture_,
                                                   texture_level_zero))
    return false;

  *texture = ScopedComPtr<IDirect3DTexture9>(user_scratch_texture_).Detach();
  return true;
}

// Resize an RGB surface using repeated linear interpolation.
bool AcceleratedSurfaceTransformer::ResizeBilinear(
    IDirect3DSurface9* src_surface,
    const gfx::Rect& src_subrect,
    IDirect3DSurface9* dst_surface,
    const gfx::Rect& dst_rect) {
  COMPILE_ASSERT(arraysize(scaler_scratch_surfaces_) == 2, surface_count);

  gfx::Size src_size = src_subrect.size();
  gfx::Size dst_size = dst_rect.size();

  if (src_size.IsEmpty() || dst_size.IsEmpty())
    return false;

  HRESULT hr = S_OK;
  // Set up intermediate buffers needed for downsampling.
  const int resample_count = GetResampleCount(src_subrect, dst_size);
  const gfx::Size half_size =
      GetHalfSizeNoLessThan(src_subrect.size(), dst_size);
  if (resample_count > 1) {
    if (!d3d_utils::CreateOrReuseLockableSurface(device(),
                                                 half_size,
                                                 &scaler_scratch_surfaces_[0]))
      return false;
  }
  if (resample_count > 2) {
    const gfx::Size quarter_size = GetHalfSizeNoLessThan(half_size, dst_size);
    if (!d3d_utils::CreateOrReuseLockableSurface(device(),
                                                 quarter_size,
                                                 &scaler_scratch_surfaces_[1]))
      return false;
  }

  // Repeat downsampling the surface until its size becomes identical to
  // |dst_size|. We keep the factor of each downsampling no more than two
  // because using a factor more than two can introduce aliasing.
  RECT read_rect = src_subrect.ToRECT();
  gfx::Size write_size = half_size;
  int read_buffer_index = 1;
  int write_buffer_index = 0;
  for (int i = 0; i < resample_count; ++i) {
    TRACE_EVENT0("gpu", "StretchRect");
    IDirect3DSurface9* read_buffer =
        (i == 0) ? src_surface : scaler_scratch_surfaces_[read_buffer_index];
    IDirect3DSurface9* write_buffer;
    RECT write_rect;
    if (i == resample_count - 1) {
      write_buffer = dst_surface;
      write_rect = dst_rect.ToRECT();
    } else {
      write_buffer = scaler_scratch_surfaces_[write_buffer_index];
      write_rect = gfx::Rect(write_size).ToRECT();
    }

    hr = device()->StretchRect(read_buffer,
                               &read_rect,
                               write_buffer,
                               &write_rect,
                               D3DTEXF_LINEAR);

    if (FAILED(hr))
      return false;
    read_rect = write_rect;
    write_size = GetHalfSizeNoLessThan(write_size, dst_size);
    std::swap(read_buffer_index, write_buffer_index);
  }

  return true;
}

bool AcceleratedSurfaceTransformer::TransformRGBToYV12(
    IDirect3DTexture9* src_surface,
    const gfx::Size& dst_size,
    IDirect3DSurface9** dst_y,
    IDirect3DSurface9** dst_u,
    IDirect3DSurface9** dst_v) {
  gfx::Size packed_y_size;
  gfx::Size packed_uv_size;
  if (!AllocYUVBuffers(dst_size, &packed_y_size, &packed_uv_size,
                       dst_y, dst_u, dst_v)) {
    return false;
  }

  if (device_supports_multiple_render_targets()) {
    return TransformRGBToYV12_MRT(src_surface,
                                  dst_size,
                                  packed_y_size,
                                  packed_uv_size,
                                  *dst_y,
                                  *dst_u,
                                  *dst_v);
  } else {
    return TransformRGBToYV12_WithoutMRT(src_surface,
                                         dst_size,
                                         packed_y_size,
                                         packed_uv_size,
                                         *dst_y,
                                         *dst_u,
                                         *dst_v);
  }
}

bool AcceleratedSurfaceTransformer::ReadFast(IDirect3DSurface9* gpu_surface,
                                             uint8* dst,
                                             int dst_bytes_per_row,
                                             int dst_num_rows,
                                             int dst_stride) {
  // TODO(nick): Compared to GetRenderTargetData, LockRect+memcpy is 50% faster
  // on some systems, but 100x slower on others. We should have logic here to
  // choose the best path, probably by adaptively trying both and picking the
  // faster one. http://crbug.com/168532
  return ReadByGetRenderTargetData(gpu_surface, dst, dst_bytes_per_row,
                                   dst_num_rows, dst_stride);
}

bool AcceleratedSurfaceTransformer::ReadByLockAndCopy(
    IDirect3DSurface9* gpu_surface,
    uint8* dst,
    int dst_bytes_per_row,
    int dst_num_rows,
    int dst_stride) {
  D3DLOCKED_RECT locked_rect;
  {
    TRACE_EVENT0("gpu", "LockRect");
    HRESULT hr = gpu_surface->LockRect(&locked_rect, NULL,
                                       D3DLOCK_READONLY | D3DLOCK_NOSYSLOCK);
    if (FAILED(hr)) {
      LOG(ERROR) << "Failed to lock surface";
      return false;
    }
  }

  {
    TRACE_EVENT0("gpu", "memcpy");
    uint8* dst_row = dst;
    uint8* src_row = reinterpret_cast<uint8*>(locked_rect.pBits);
    for (int i = 0; i < dst_num_rows; i++) {
      memcpy(dst_row, src_row, dst_bytes_per_row);
      src_row += locked_rect.Pitch;
      dst_row += dst_stride;
    }
  }
  gpu_surface->UnlockRect();
  return true;
}

bool AcceleratedSurfaceTransformer::ReadByGetRenderTargetData(
    IDirect3DSurface9* gpu_surface,
    uint8* dst,
    int dst_bytes_per_row,
    int dst_num_rows,
    int dst_stride) {
  HRESULT hr = 0;
  ScopedComPtr<IDirect3DSurface9> system_surface;
  gfx::Size src_size = d3d_utils::GetSize(gpu_surface);

  // Depending on pitch and alignment, we might be able to wrap |dst| in an
  // offscreen- plain surface for a direct copy.
  const bool direct_copy = (dst_stride == dst_bytes_per_row &&
                            src_size.width() * 4 == dst_bytes_per_row &&
                            dst_num_rows >= src_size.height());

  {
    TRACE_EVENT0("gpu", "CreateOffscreenPlainSurface");
    HANDLE handle = reinterpret_cast<HANDLE>(dst);
    hr = device()->CreateOffscreenPlainSurface(src_size.width(),
                                               src_size.height(),
                                               D3DFMT_A8R8G8B8,
                                               D3DPOOL_SYSTEMMEM,
                                               system_surface.Receive(),
                                               direct_copy ? &handle : NULL);
    if (!SUCCEEDED(hr)) {
      LOG(ERROR) << "Failed to create offscreen plain surface.";
      return false;
    }
  }

  {
    TRACE_EVENT0("gpu", "GetRenderTargetData");
    hr = device()->GetRenderTargetData(gpu_surface, system_surface);
    if (FAILED(hr)) {
      LOG(ERROR) << "Failed GetRenderTargetData";
      return false;
    }
  }

  if (direct_copy) {
    // We're done: |system_surface| is a wrapper around |dst|.
    return true;
  } else {
    // Extra memcpy required from |system_surface| to |dst|.
    return ReadByLockAndCopy(system_surface, dst, dst_bytes_per_row,
                             dst_num_rows, dst_stride);
  }
}

bool AcceleratedSurfaceTransformer::AllocYUVBuffers(
    const gfx::Size& dst_size,
    gfx::Size* y_size,
    gfx::Size* uv_size,
    IDirect3DSurface9** dst_y,
    IDirect3DSurface9** dst_u,
    IDirect3DSurface9** dst_v) {

  // Y is full height, packed into 4 components.
  *y_size = gfx::Size((dst_size.width() + 3) / 4, dst_size.height());

  // U and V are half the size (rounded up) of Y.
  *uv_size = gfx::Size((y_size->width() + 1) / 2, (y_size->height() + 1) / 2);

  if (!d3d_utils::CreateOrReuseLockableSurface(device(), *y_size,
                                               &y_scratch_surface_)) {
    return false;
  }
  if (!d3d_utils::CreateOrReuseLockableSurface(device(), *uv_size,
                                               &u_scratch_surface_)) {
    return false;
  }
  if (!d3d_utils::CreateOrReuseLockableSurface(device(), *uv_size,
                                               &v_scratch_surface_)) {
    return false;
  }

  *dst_y = ScopedComPtr<IDirect3DSurface9>(y_scratch_surface_).Detach();
  *dst_u = ScopedComPtr<IDirect3DSurface9>(u_scratch_surface_).Detach();
  *dst_v = ScopedComPtr<IDirect3DSurface9>(v_scratch_surface_).Detach();

  return true;
}

bool AcceleratedSurfaceTransformer::TransformRGBToYV12_MRT(
    IDirect3DTexture9* src_surface,
    const gfx::Size& dst_size,
    const gfx::Size& packed_y_size,
    const gfx::Size& packed_uv_size,
    IDirect3DSurface9* dst_y,
    IDirect3DSurface9* dst_u,
    IDirect3DSurface9* dst_v) {
  TRACE_EVENT0("gpu", "RGBToYV12_MRT");

  ScopedRenderTargetRestorer color0_restorer(device(), 0);
  ScopedRenderTargetRestorer color1_restorer(device(), 1);

  // Create an intermediate surface to hold the UUVV values. This is color
  // target 1 for the first pass, and texture 0 for the second pass. Its
  // values are not read afterwards.

  ScopedComPtr<IDirect3DSurface9> uv_as_surface;
  if (!d3d_utils::CreateOrReuseRenderTargetTexture(device(),
                                                   packed_y_size,
                                                   &uv_scratch_texture_,
                                                   uv_as_surface.Receive())) {
    return false;
  }

  // Clamping is required if (dst_size.width() % 8 != 0) or if
  // (dst_size.height != 0), so we set it always. Both passes rely on this.
  device()->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
  device()->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);

  /////////////////////////////////////////
  // Pass 1: RGB --(scaled)--> YYYY + UUVV
  SetShaderCombo(RGB_TO_YV12_FAST__PASS_1_OF_2);

  // Enable bilinear filtering if scaling is required. The filtering will take
  // place entirely in the first pass.
  if (d3d_utils::GetSize(src_surface) != dst_size) {
    device()->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
    device()->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
  } else {
    device()->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
    device()->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);
  }

  device()->SetTexture(0, src_surface);
  device()->SetRenderTarget(0, dst_y);
  device()->SetRenderTarget(1, uv_as_surface);
  DrawScreenAlignedQuad(dst_size);

  /////////////////////////////////////////
  // Pass 2: UUVV -> UUUU + VVVV
  SetShaderCombo(RGB_TO_YV12_FAST__PASS_2_OF_2);

  // The second pass uses bilinear minification to achieve vertical scaling,
  // so enable it always.
  device()->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
  device()->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

  device()->SetTexture(0, uv_scratch_texture_);
  device()->SetRenderTarget(0, dst_u);
  device()->SetRenderTarget(1, dst_v);
  DrawScreenAlignedQuad(packed_y_size);

  // Clear surface references.
  device()->SetTexture(0, NULL);
  return true;
}

bool AcceleratedSurfaceTransformer::TransformRGBToYV12_WithoutMRT(
    IDirect3DTexture9* src_surface,
    const gfx::Size& dst_size,
    const gfx::Size& packed_y_size,
    const gfx::Size& packed_uv_size,
    IDirect3DSurface9* dst_y,
    IDirect3DSurface9* dst_u,
    IDirect3DSurface9* dst_v) {
  TRACE_EVENT0("gpu", "RGBToYV12_WithoutMRT");

  ScopedRenderTargetRestorer color0_restorer(device(), 0);

  ScopedComPtr<IDirect3DTexture9> scaled_src_surface;

  // If scaling is requested, do it to a temporary texture. The MRT path
  // gets a scale for free, so we need to support it here too (even though
  // it's an extra operation).
  if (d3d_utils::GetSize(src_surface) == dst_size) {
    scaled_src_surface = src_surface;
  } else {
    ScopedComPtr<IDirect3DSurface9> dst_level0;
    if (!d3d_utils::CreateOrReuseRenderTargetTexture(
            device(), dst_size, &uv_scratch_texture_, dst_level0.Receive())) {
      return false;
    }
    if (!Copy(src_surface, dst_level0, dst_size)) {
      return false;
    }
    scaled_src_surface = uv_scratch_texture_;
  }

  // Input texture is the same for all three passes.
  device()->SetTexture(0, scaled_src_surface);

  // Clamping is required if (dst_size.width() % 8 != 0) or if
  // (dst_size.height != 0), so we set it always. All passes rely on this.
  device()->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
  device()->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);

  /////////////////////
  // Pass 1: RGB -> Y.
  SetShaderCombo(RGB_TO_YV12_SLOW__PASS_1_OF_3);

  // Pass 1 just needs point sampling.
  device()->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
  device()->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);

  device()->SetRenderTarget(0, dst_y);
  DrawScreenAlignedQuad(dst_size);

  // Passes 2 and 3 rely on bilinear minification to downsample U and V.
  device()->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
  device()->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

  /////////////////////
  // Pass 2: RGB -> U.
  SetShaderCombo(RGB_TO_YV12_SLOW__PASS_2_OF_3);
  device()->SetRenderTarget(0, dst_u);
  DrawScreenAlignedQuad(dst_size);

  /////////////////////
  // Pass 3: RGB -> V.
  SetShaderCombo(RGB_TO_YV12_SLOW__PASS_3_OF_3);
  device()->SetRenderTarget(0, dst_v);
  DrawScreenAlignedQuad(dst_size);

  // Clear surface references.
  device()->SetTexture(0, NULL);
  return true;
}

IDirect3DDevice9* AcceleratedSurfaceTransformer::device() {
  return device_;
}

bool AcceleratedSurfaceTransformer::SetShaderCombo(ShaderCombo combo) {
  // Compile shaders on first use, if needed. Normally the compilation should
  // already have happened at Init() time, but test code might force
  // us down an unusual path.
  if (!CompileShaderCombo(combo))
    return false;

  HRESULT hr = device()->SetVertexShader(vertex_shaders_[combo]);
  if (!SUCCEEDED(hr))
    return false;
  hr = device()->SetPixelShader(pixel_shaders_[combo]);
  if (!SUCCEEDED(hr))
    return false;
  return true;
}