summaryrefslogtreecommitdiffstats
path: root/libsensors/akmdfs/AKFS_Measure.c
blob: 84c08431825667da67135a34a0f3ad617a5b2fa0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/******************************************************************************
 *
 * Copyright (C) 2012 Asahi Kasei Microdevices Corporation, Japan
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 ******************************************************************************/
#ifdef WIN32
#include "AK8975_LinuxDriver.h"
#else
#include "AK8975Driver.h"
#endif

#include "AKFS_Measure.h"
#include "AKFS_Disp.h"
#include "AKFS_APIs.h"

/*!
  Read sensitivity adjustment data from fuse ROM.
  @return If data are read successfully, the return value is #AKM_SUCCESS.
   Otherwise the return value is #AKM_FAIL.
  @param[out] regs The read ASA values. When this function succeeds, ASAX value
   is saved in regs[0], ASAY is saved in regs[1], ASAZ is saved in regs[2].
 */
int16 AKFS_ReadAK8975FUSEROM(
		uint8	regs[3]
)
{
	/* Set to FUSE ROM access mode */
	if (AKD_SetMode(AK8975_MODE_FUSE_ACCESS) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}    

	/* Read values. ASAX, ASAY, ASAZ */
	if (AKD_RxData(AK8975_FUSE_ASAX, regs, 3) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}    

	/* Set to PowerDown mode */
	if (AKD_SetMode(AK8975_MODE_POWERDOWN) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}    

	AKMDEBUG(DBG_LEVEL2, "%s: asa(dec)=%d,%d,%d\n",
			__FUNCTION__, regs[0], regs[1], regs[2]);

	return AKM_SUCCESS;
}

/*!
  Carry out self-test.
  @return If this function succeeds, the return value is #AKM_SUCCESS.
   Otherwise the return value is #AKM_FAIL.
 */
int16 AKFS_SelfTest(void)
{
	BYTE	i2cData[SENSOR_DATA_SIZE];
	BYTE	asa[3];
	AKFLOAT	hdata[3];
	int16	ret;

	/* Set to FUSE ROM access mode */
	if (AKD_SetMode(AK8975_MODE_FUSE_ACCESS) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}

	/* Read values from ASAX to ASAZ */
	if (AKD_RxData(AK8975_FUSE_ASAX, asa, 3) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}

	/* Set to PowerDown mode */
	if (AKD_SetMode(AK8975_MODE_POWERDOWN) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}

	/* Set to self-test mode */
	i2cData[0] = 0x40;
	if (AKD_TxData(AK8975_REG_ASTC, i2cData, 1) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}

	/* Set to Self-test mode */
	if (AKD_SetMode(AK8975_MODE_SELF_TEST) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}

	/*
	   Wait for DRDY pin changes to HIGH.
	   Get measurement data from AK8975
	 */
	if (AKD_GetMagneticData(i2cData) != AKD_SUCCESS) {
		AKMERROR;
		return AKM_FAIL;
	}

	hdata[0] = AK8975_HDATA_CONVERTER(i2cData[2], i2cData[1], asa[0]);
	hdata[1] = AK8975_HDATA_CONVERTER(i2cData[4], i2cData[3], asa[1]);
	hdata[2] = AK8975_HDATA_CONVERTER(i2cData[6], i2cData[5], asa[2]);

	/* Test */
	ret = 1;
	if ((hdata[0] < AK8975_SELFTEST_MIN_X) ||
		(AK8975_SELFTEST_MAX_X < hdata[0])) {
		ret = 0;
	}
	if ((hdata[1] < AK8975_SELFTEST_MIN_Y) ||
		(AK8975_SELFTEST_MAX_Y < hdata[1])) {
		ret = 0;
	}
	if ((hdata[2] < AK8975_SELFTEST_MIN_Z) ||
		(AK8975_SELFTEST_MAX_Z < hdata[2])) {
		ret = 0;
	}

	AKMDEBUG(DBG_LEVEL2, "Test(%s):%8.2f, %8.2f, %8.2f\n",
		(ret ? "Success" : "fail"), hdata[0], hdata[1], hdata[2]);

	if (ret) {
		return AKM_SUCCESS;
	} else {
		return AKM_FAIL;
	}
}

/*!
  This function calculate the duration of sleep for maintaining
   the loop keep the period.
  This function calculates "minimum - (end - start)".
  @return The result of above equation in nanosecond.
  @param end The time of after execution.
  @param start The time of before execution.
  @param minimum Loop period of each execution.
 */
struct timespec AKFS_CalcSleep(
	const struct timespec* end,
	const struct timespec* start,
	const int64_t minimum
)
{
	int64_t endL;
	int64_t startL;
	int64_t diff;

	struct timespec ret;

	endL = (end->tv_sec * 1000000000) + end->tv_nsec;
	startL = (start->tv_sec * 1000000000) + start->tv_nsec;
	diff = minimum;

	diff -= (endL - startL);

	/* Don't allow negative value */
	if (diff < 0) {
		diff = 0;
	}

	/* Convert to timespec */
	if (diff > 1000000000) {
	ret.tv_sec = diff / 1000000000;
		ret.tv_nsec = diff % 1000000000;
	} else {
		ret.tv_sec = 0;
		ret.tv_nsec = diff;
	}
	return ret;
}

/*!
  Get interval of each sensors from device driver.
  @return If this function succeeds, the return value is #AKM_SUCCESS.
   Otherwise the return value is #AKM_FAIL.
  @param flag This variable indicates what sensor frequency is updated.
  @param minimum This value show the minimum loop period in all sensors.
 */
int16 AKFS_GetInterval(
		uint16*  flag,
		int64_t* minimum
)
{
	/* Accelerometer, Magnetometer, Orientation */
	/* Delay is in nano second unit. */
	/* Negative value means the sensor is disabled.*/
	int64_t delay[AKM_NUM_SENSORS];
	int i;

	if (AKD_GetDelay(delay) < 0) {
		AKMERROR;
		return AKM_FAIL;
	}
	AKMDATA(AKMDATA_GETINTERVAL,"delay[A,M,O]=%lld,%lld,%lld\n",
		delay[0], delay[1], delay[2]);

	/* update */
	*minimum = 1000000000;
	*flag = 0;
	for (i=0; i<AKM_NUM_SENSORS; i++) {
		/* Set flag */
		if (delay[i] >= 0) {
			*flag |= 1 << i;
			if (*minimum > delay[i]) {
				*minimum = delay[i];
			}
		}
	}
	return AKM_SUCCESS;
}

/*!
  If this program run as console mode, measurement result will be displayed
   on console terminal.
  @return If this function succeeds, the return value is #AKM_SUCCESS.
   Otherwise the return value is #AKM_FAIL.
 */
void AKFS_OutputResult(
	const	uint16			flag,
	const	AKSENSOR_DATA*	acc,
	const	AKSENSOR_DATA*	mag,
	const	AKSENSOR_DATA*	ori
)
{
	int buf[YPR_DATA_SIZE];

	/* Store to buffer */
	buf[0] = flag;					/* Data flag */
	buf[1] = CONVERT_ACC(acc->x);	/* Ax */
	buf[2] = CONVERT_ACC(acc->y);	/* Ay */
	buf[3] = CONVERT_ACC(acc->z);	/* Az */
	buf[4] = acc->status;			/* Acc status */
	buf[5] = CONVERT_MAG(mag->x);	/* Mx */
	buf[6] = CONVERT_MAG(mag->y);	/* My */
	buf[7] = CONVERT_MAG(mag->z);	/* Mz */
	buf[8] = mag->status;			/* Mag status */
	buf[9] = CONVERT_ORI(ori->x);	/* yaw */
	buf[10] = CONVERT_ORI(ori->y);	/* pitch */
	buf[11] = CONVERT_ORI(ori->z);	/* roll */

	if (g_opmode & OPMODE_CONSOLE) {
		/* Console mode */
		Disp_Result(buf);
	}

	/* Set result to driver */
		AKD_SetYPR(buf);
}

/*!
 This is the main routine of measurement.
 */
void AKFS_MeasureLoop(void)
{
	BYTE    i2cData[SENSOR_DATA_SIZE]; /* ST1 ~ ST2 */
	int16	mag[3];
	int16	mstat;
	int16	acc[3];
	struct	timespec tsstart= {0, 0};
	struct	timespec tsend = {0, 0};
	struct	timespec doze;
	int64_t	minimum;
	uint16	flag;
	AKSENSOR_DATA sv_acc;
	AKSENSOR_DATA sv_mag;
	AKSENSOR_DATA sv_ori;
	AKFLOAT tmpx, tmpy, tmpz;
	int16 tmp_accuracy;

	minimum = -1;

#ifdef WIN32
	clock_init_time();
#endif

	/* Initialize library functions and device */
	if (AKFS_Start(CSPEC_SETTING_FILE) != AKM_SUCCESS) {
		AKMERROR;
		goto MEASURE_END;
	}

	while (g_stopRequest != AKM_TRUE) {
		/* Beginning time */
		if (clock_gettime(CLOCK_MONOTONIC, &tsstart) < 0) {
			AKMERROR;
			goto MEASURE_END;
		}

		/* Get interval */
		if (AKFS_GetInterval(&flag, &minimum) != AKM_SUCCESS) {
			AKMERROR;
			goto MEASURE_END;
		}

		if ((flag & ACC_DATA_READY) || (flag & ORI_DATA_READY)) {
			/* Get accelerometer */
			if (AKD_GetAccelerationData(acc) != AKD_SUCCESS) {
				AKMERROR;
				goto MEASURE_END;
			}

			/* Calculate accelerometer vector */
			if (AKFS_Get_ACCELEROMETER(acc, 0, &tmpx, &tmpy, &tmpz, &tmp_accuracy) == AKM_SUCCESS) {
				sv_acc.x = tmpx;
				sv_acc.y = tmpy;
				sv_acc.z = tmpz;
				sv_acc.status = tmp_accuracy;
			} else {
				flag &= ~ACC_DATA_READY;
				flag &= ~ORI_DATA_READY;
			}
		}

		if ((flag & MAG_DATA_READY) || (flag & ORI_DATA_READY)) {
			/* Set to measurement mode  */
			if (AKD_SetMode(AK8975_MODE_SNG_MEASURE) != AKD_SUCCESS) {
				AKMERROR;
				goto MEASURE_END;
			}

			/* Wait for DRDY and get data from device */
			if (AKD_GetMagneticData(i2cData) != AKD_SUCCESS) {
				AKMERROR;
				goto MEASURE_END;
			}
			/* raw data to x,y,z value */
			mag[0] = (int)((int16_t)(i2cData[2]<<8)+((int16_t)i2cData[1]));
			mag[1] = (int)((int16_t)(i2cData[4]<<8)+((int16_t)i2cData[3]));
			mag[2] = (int)((int16_t)(i2cData[6]<<8)+((int16_t)i2cData[5]));
			mstat = i2cData[0] | i2cData[7];

			AKMDATA(AKMDATA_BDATA,
				"bData=%02X,%02X,%02X,%02X,%02X,%02X,%02X,%02X\n",
				i2cData[0], i2cData[1], i2cData[2], i2cData[3],
				i2cData[4], i2cData[5], i2cData[6], i2cData[7]);

			/* Calculate magnetic field vector */
			if (AKFS_Get_MAGNETIC_FIELD(mag, mstat, &tmpx, &tmpy, &tmpz, &tmp_accuracy) == AKM_SUCCESS) {
				sv_mag.x = tmpx;
				sv_mag.y = tmpy;
				sv_mag.z = tmpz;
				sv_mag.status = tmp_accuracy;
			} else {
				flag &= ~MAG_DATA_READY;
				flag &= ~ORI_DATA_READY;
			}
		}

		if (flag & ORI_DATA_READY) {
			if (AKFS_Get_ORIENTATION(&tmpx, &tmpy, &tmpz, &tmp_accuracy) == AKM_SUCCESS) {
				sv_ori.x = tmpx;
				sv_ori.y = tmpy;
				sv_ori.z = tmpz;
				sv_ori.status = tmp_accuracy;
			} else {
				flag &= ~ORI_DATA_READY;
			}
		}

		/* Output result */
		AKFS_OutputResult(flag, &sv_acc, &sv_mag, &sv_ori);

		/* Ending time */
		if (clock_gettime(CLOCK_MONOTONIC, &tsend) < 0) {
			AKMERROR;
			goto MEASURE_END;
		}

		/* Calculate duration */
		doze = AKFS_CalcSleep(&tsend, &tsstart, minimum);
		AKMDATA(AKMDATA_LOOP, "Sleep: %6.2f msec\n", (doze.tv_nsec/1000000.0f));
		nanosleep(&doze, NULL);

#ifdef WIN32
		if (_kbhit()) {
			_getch();
			break;
		}
#endif
	}

MEASURE_END:
	/* Set to PowerDown mode */
	if (AKD_SetMode(AK8975_MODE_POWERDOWN) != AKD_SUCCESS) {
		AKMERROR;
		return;
	}

	/* Save parameters */
	if (AKFS_Stop(CSPEC_SETTING_FILE) != AKM_SUCCESS) {
		AKMERROR;
	}
}