/*
* Copyright (C) 2013 Paul Kocialkowski
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LOG_TAG "exynos_sensors"
#include
#include "exynos_sensors.h"
struct orientation_data {
struct exynos_sensors_handlers *acceleration_sensor;
struct exynos_sensors_handlers *magnetic_sensor;
sensors_vec_t orientation;
sensors_vec_t acceleration;
sensors_vec_t magnetic;
long int delay;
int uinput_fd;
pthread_t thread;
pthread_mutex_t mutex;
int thread_continue;
};
static float rad2deg(float v)
{
return (v * 180.0f / 3.1415926535f);
}
static float vector_scalar(sensors_vec_t *v, sensors_vec_t *d)
{
return v->x * d->x + v->y * d->y + v->z * d->z;
}
static float vector_length(sensors_vec_t *v)
{
return sqrtf(vector_scalar(v, v));
}
void orientation_calculate(sensors_vec_t *a, sensors_vec_t *m, sensors_vec_t *o)
{
float azimuth, pitch, roll;
float la, sinp, cosp, sinr, cosr, x, y;
if (a == NULL || m == NULL || o == NULL)
return;
la = vector_length(a);
pitch = asinf(-(a->y) / la);
roll = asinf((a->x) / la);
sinp = sinf(pitch);
cosp = cosf(pitch);
sinr = sinf(roll);
cosr = cosf(roll);
y = -(m->x) * cosr + m->z * sinr;
x = m->x * sinp * sinr + m->y * cosp + m->z * sinp * cosr;
azimuth = atan2f(y, x);
o->x = rad2deg(azimuth);
o->y = rad2deg(pitch);
o->z = rad2deg(roll);
if (o->x < 0)
o->x += 360.0f;
}
void *orientation_thread(void *thread_data)
{
struct exynos_sensors_handlers *handlers = NULL;
struct orientation_data *data = NULL;
struct input_event event;
struct timeval time;
long int before, after;
int diff;
int uinput_fd;
if (thread_data == NULL)
return NULL;
handlers = (struct exynos_sensors_handlers *) thread_data;
if (handlers->data == NULL)
return NULL;
data = (struct orientation_data *) handlers->data;
uinput_fd = data->uinput_fd;
if (uinput_fd < 0)
return NULL;
while (data->thread_continue) {
pthread_mutex_lock(&data->mutex);
if (!data->thread_continue)
break;
while (handlers->activated) {
gettimeofday(&time, NULL);
before = timestamp(&time);
orientation_calculate(&data->acceleration, &data->magnetic, &data->orientation);
input_event_set(&event, EV_REL, REL_X, (int) (data->orientation.x * 1000));
write(uinput_fd, &event, sizeof(event));
input_event_set(&event, EV_REL, REL_Y, (int) (data->orientation.y * 1000));
write(uinput_fd, &event, sizeof(event));
input_event_set(&event, EV_REL, REL_Z, (int) (data->orientation.z * 1000));
write(uinput_fd, &event, sizeof(event));
input_event_set(&event, EV_SYN, 0, 0);
write(uinput_fd, &event, sizeof(event));
gettimeofday(&time, NULL);
after = timestamp(&time);
diff = (int) (data->delay - (after - before)) / 1000;
if (diff <= 0)
continue;
usleep(diff);
}
}
return NULL;
}
int orientation_fill(struct exynos_sensors_handlers *handlers,
sensors_vec_t *acceleration, sensors_vec_t *magnetic)
{
struct orientation_data *data;
// ALOGD("%s(%p, %p, %p)", __func__, handlers, acceleration, magnetic);
if (handlers == NULL || handlers->data == NULL)
return -EINVAL;
data = (struct orientation_data *) handlers->data;
if (acceleration != NULL) {
data->acceleration.x = acceleration->x;
data->acceleration.y = acceleration->y;
data->acceleration.z = acceleration->z;
}
if (magnetic != NULL) {
data->magnetic.x = magnetic->x;
data->magnetic.y = magnetic->y;
data->magnetic.z = magnetic->z;
}
return 0;
}
int orientation_init(struct exynos_sensors_handlers *handlers,
struct exynos_sensors_device *device)
{
struct orientation_data *data = NULL;
pthread_attr_t thread_attr;
int uinput_fd = -1;
int input_fd = -1;
int rc;
int i;
ALOGD("%s(%p, %p)", __func__, handlers, device);
if (handlers == NULL || device == NULL)
return -EINVAL;
data = (struct orientation_data *) calloc(1, sizeof(struct orientation_data));
for (i = 0; i < device->handlers_count; i++) {
if (device->handlers[i] == NULL)
continue;
if (device->handlers[i]->handle == SENSOR_TYPE_ACCELEROMETER)
data->acceleration_sensor = device->handlers[i];
else if (device->handlers[i]->handle == SENSOR_TYPE_MAGNETIC_FIELD)
data->magnetic_sensor = device->handlers[i];
}
if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL) {
ALOGE("%s: Missing sensors for orientation", __func__);
goto error;
}
uinput_fd = uinput_rel_create("orientation");
if (uinput_fd < 0) {
ALOGD("%s: Unable to create uinput", __func__);
goto error;
}
input_fd = input_open("orientation");
if (input_fd < 0) {
ALOGE("%s: Unable to open orientation input", __func__);
goto error;
}
data->thread_continue = 1;
pthread_mutex_init(&data->mutex, NULL);
pthread_mutex_lock(&data->mutex);
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
rc = pthread_create(&data->thread, &thread_attr, orientation_thread, (void *) handlers);
if (rc < 0) {
ALOGE("%s: Unable to create orientation thread", __func__);
pthread_mutex_destroy(&data->mutex);
goto error;
}
data->uinput_fd = uinput_fd;
handlers->poll_fd = input_fd;
handlers->data = (void *) data;
return 0;
error:
if (data != NULL)
free(data);
if (uinput_fd >= 0)
close(uinput_fd);
if (input_fd >= 0)
close(input_fd);
handlers->poll_fd = -1;
handlers->data = NULL;
return -1;
}
int orientation_deinit(struct exynos_sensors_handlers *handlers)
{
struct orientation_data *data;
ALOGD("%s(%p)", __func__, handlers);
if (handlers == NULL || handlers->data == NULL)
return -EINVAL;
data = (struct orientation_data *) handlers->data;
handlers->activated = 0;
data->thread_continue = 0;
pthread_mutex_unlock(&data->mutex);
pthread_mutex_destroy(&data->mutex);
if (data->uinput_fd >= 0) {
uinput_destroy(data->uinput_fd);
close(data->uinput_fd);
}
data->uinput_fd = -1;
if (handlers->poll_fd >= 0)
close(handlers->poll_fd);
handlers->poll_fd = -1;
free(handlers->data);
handlers->data = NULL;
return 0;
}
int orientation_activate(struct exynos_sensors_handlers *handlers)
{
struct orientation_data *data;
ALOGD("%s(%p)", __func__, handlers);
if (handlers == NULL || handlers->data == NULL)
return -EINVAL;
data = (struct orientation_data *) handlers->data;
if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL)
return -1;
data->acceleration_sensor->needed |= EXYNOS_SENSORS_NEEDED_ORIENTATION;
if (data->acceleration_sensor->needed == EXYNOS_SENSORS_NEEDED_ORIENTATION)
data->acceleration_sensor->activate(data->acceleration_sensor);
data->magnetic_sensor->needed |= EXYNOS_SENSORS_NEEDED_ORIENTATION;
if (data->magnetic_sensor->needed == EXYNOS_SENSORS_NEEDED_ORIENTATION)
data->magnetic_sensor->activate(data->magnetic_sensor);
handlers->activated = 1;
pthread_mutex_unlock(&data->mutex);
return 0;
}
int orientation_deactivate(struct exynos_sensors_handlers *handlers)
{
struct orientation_data *data;
ALOGD("%s(%p)", __func__, handlers);
if (handlers == NULL || handlers->data == NULL)
return -EINVAL;
data = (struct orientation_data *) handlers->data;
if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL)
return -1;
data->acceleration_sensor->needed &= ~(EXYNOS_SENSORS_NEEDED_ORIENTATION);
if (data->acceleration_sensor->needed == 0)
data->acceleration_sensor->deactivate(data->acceleration_sensor);
data->magnetic_sensor->needed &= ~(EXYNOS_SENSORS_NEEDED_ORIENTATION);
if (data->magnetic_sensor->needed == 0)
data->magnetic_sensor->deactivate(data->magnetic_sensor);
handlers->activated = 0;
return 0;
}
int orientation_set_delay(struct exynos_sensors_handlers *handlers, long int delay)
{
struct orientation_data *data;
ALOGD("%s(%p)", __func__, handlers);
if (handlers == NULL || handlers->data == NULL)
return -EINVAL;
data = (struct orientation_data *) handlers->data;
if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL)
return -1;
if (data->acceleration_sensor->needed == EXYNOS_SENSORS_NEEDED_ORIENTATION)
data->acceleration_sensor->set_delay(data->acceleration_sensor, delay);
if (data->magnetic_sensor->needed == EXYNOS_SENSORS_NEEDED_ORIENTATION)
data->magnetic_sensor->set_delay(data->magnetic_sensor, delay);
data->delay = delay;
return 0;
}
float orientation_convert(int value)
{
return (float) value / 1000.0f;
}
int orientation_get_data(struct exynos_sensors_handlers *handlers,
struct sensors_event_t *event)
{
struct orientation_data *data;
struct input_event input_event;
int input_fd = -1;
int rc;
// ALOGD("%s(%p, %p)", __func__, handlers, event);
if (handlers == NULL || handlers->data == NULL || event == NULL)
return -EINVAL;
data = (struct orientation_data *) handlers->data;
input_fd = handlers->poll_fd;
if (input_fd < 0)
return -EINVAL;
event->version = sizeof(struct sensors_event_t);
event->sensor = handlers->handle;
event->type = handlers->handle;
event->orientation.status = SENSOR_STATUS_ACCURACY_MEDIUM;
do {
rc = read(input_fd, &input_event, sizeof(input_event));
if (rc < (int) sizeof(input_event))
break;
if (input_event.type == EV_REL) {
switch (input_event.code) {
case REL_X:
event->orientation.x = orientation_convert(input_event.value);
break;
case REL_Y:
event->orientation.y = orientation_convert(input_event.value);
break;
case REL_Z:
event->orientation.z = orientation_convert(input_event.value);
break;
default:
continue;
}
} else if (input_event.type == EV_SYN) {
if (input_event.code == SYN_REPORT)
event->timestamp = input_timestamp(&input_event);
}
} while (input_event.type != EV_SYN);
return 0;
}
struct exynos_sensors_handlers orientation = {
.name = "Orientation",
.handle = SENSOR_TYPE_ORIENTATION,
.init = orientation_init,
.deinit = orientation_deinit,
.activate = orientation_activate,
.deactivate = orientation_deactivate,
.set_delay = orientation_set_delay,
.get_data = orientation_get_data,
.activated = 0,
.needed = 0,
.poll_fd = -1,
.data = NULL,
};