summaryrefslogtreecommitdiffstats
path: root/src/crypto/bn/generic.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/bn/generic.c')
-rw-r--r--src/crypto/bn/generic.c1120
1 files changed, 1120 insertions, 0 deletions
diff --git a/src/crypto/bn/generic.c b/src/crypto/bn/generic.c
new file mode 100644
index 0000000..224a47c
--- /dev/null
+++ b/src/crypto/bn/generic.c
@@ -0,0 +1,1120 @@
+/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
+ * All rights reserved.
+ *
+ * This package is an SSL implementation written
+ * by Eric Young (eay@cryptsoft.com).
+ * The implementation was written so as to conform with Netscapes SSL.
+ *
+ * This library is free for commercial and non-commercial use as long as
+ * the following conditions are aheared to. The following conditions
+ * apply to all code found in this distribution, be it the RC4, RSA,
+ * lhash, DES, etc., code; not just the SSL code. The SSL documentation
+ * included with this distribution is covered by the same copyright terms
+ * except that the holder is Tim Hudson (tjh@cryptsoft.com).
+ *
+ * Copyright remains Eric Young's, and as such any Copyright notices in
+ * the code are not to be removed.
+ * If this package is used in a product, Eric Young should be given attribution
+ * as the author of the parts of the library used.
+ * This can be in the form of a textual message at program startup or
+ * in documentation (online or textual) provided with the package.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * "This product includes cryptographic software written by
+ * Eric Young (eay@cryptsoft.com)"
+ * The word 'cryptographic' can be left out if the rouines from the library
+ * being used are not cryptographic related :-).
+ * 4. If you include any Windows specific code (or a derivative thereof) from
+ * the apps directory (application code) you must include an acknowledgement:
+ * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * The licence and distribution terms for any publically available version or
+ * derivative of this code cannot be changed. i.e. this code cannot simply be
+ * copied and put under another distribution licence
+ * [including the GNU Public Licence.] */
+
+#include <openssl/bn.h>
+
+#include <assert.h>
+
+#include "internal.h"
+
+
+/* Generic implementations of most operations are needed for:
+ * - Configurations without inline assembly.
+ * - Architectures other than x86 or x86_64.
+ * - Windows x84_64; x86_64-gcc.c does not build on MSVC. */
+#if defined(OPENSSL_NO_ASM) || \
+ (!defined(OPENSSL_X86_64) && !defined(OPENSSL_X86)) || \
+ (defined(OPENSSL_X86_64) && defined(OPENSSL_WINDOWS))
+
+#if defined(OPENSSL_WINDOWS)
+#define alloca _alloca
+#else
+#include <alloca.h>
+#endif
+
+#ifdef BN_LLONG
+#define mul_add(r, a, w, c) \
+ { \
+ BN_ULLONG t; \
+ t = (BN_ULLONG)w * (a) + (r) + (c); \
+ (r) = Lw(t); \
+ (c) = Hw(t); \
+ }
+
+#define mul(r, a, w, c) \
+ { \
+ BN_ULLONG t; \
+ t = (BN_ULLONG)w * (a) + (c); \
+ (r) = Lw(t); \
+ (c) = Hw(t); \
+ }
+
+#define sqr(r0, r1, a) \
+ { \
+ BN_ULLONG t; \
+ t = (BN_ULLONG)(a) * (a); \
+ (r0) = Lw(t); \
+ (r1) = Hw(t); \
+ }
+
+#elif defined(BN_UMULT_LOHI)
+#define mul_add(r, a, w, c) \
+ { \
+ BN_ULONG high, low, ret, tmp = (a); \
+ ret = (r); \
+ BN_UMULT_LOHI(low, high, w, tmp); \
+ ret += (c); \
+ (c) = (ret < (c)) ? 1 : 0; \
+ (c) += high; \
+ ret += low; \
+ (c) += (ret < low) ? 1 : 0; \
+ (r) = ret; \
+ }
+
+#define mul(r, a, w, c) \
+ { \
+ BN_ULONG high, low, ret, ta = (a); \
+ BN_UMULT_LOHI(low, high, w, ta); \
+ ret = low + (c); \
+ (c) = high; \
+ (c) += (ret < low) ? 1 : 0; \
+ (r) = ret; \
+ }
+
+#define sqr(r0, r1, a) \
+ { \
+ BN_ULONG tmp = (a); \
+ BN_UMULT_LOHI(r0, r1, tmp, tmp); \
+ }
+
+#else
+
+/*************************************************************
+ * No long long type
+ */
+
+#define LBITS(a) ((a) & BN_MASK2l)
+#define HBITS(a) (((a) >> BN_BITS4) & BN_MASK2l)
+#define L2HBITS(a) (((a) << BN_BITS4) & BN_MASK2)
+
+#define LLBITS(a) ((a) & BN_MASKl)
+#define LHBITS(a) (((a) >> BN_BITS2) & BN_MASKl)
+#define LL2HBITS(a) ((BN_ULLONG)((a) & BN_MASKl) << BN_BITS2)
+
+#define mul64(l, h, bl, bh) \
+ { \
+ BN_ULONG m, m1, lt, ht; \
+ \
+ lt = l; \
+ ht = h; \
+ m = (bh) * (lt); \
+ lt = (bl) * (lt); \
+ m1 = (bl) * (ht); \
+ ht = (bh) * (ht); \
+ m = (m + m1) & BN_MASK2; \
+ if (m < m1) \
+ ht += L2HBITS((BN_ULONG)1); \
+ ht += HBITS(m); \
+ m1 = L2HBITS(m); \
+ lt = (lt + m1) & BN_MASK2; \
+ if (lt < m1) \
+ ht++; \
+ (l) = lt; \
+ (h) = ht; \
+ }
+
+#define sqr64(lo, ho, in) \
+ { \
+ BN_ULONG l, h, m; \
+ \
+ h = (in); \
+ l = LBITS(h); \
+ h = HBITS(h); \
+ m = (l) * (h); \
+ l *= l; \
+ h *= h; \
+ h += (m & BN_MASK2h1) >> (BN_BITS4 - 1); \
+ m = (m & BN_MASK2l) << (BN_BITS4 + 1); \
+ l = (l + m) & BN_MASK2; \
+ if (l < m) \
+ h++; \
+ (lo) = l; \
+ (ho) = h; \
+ }
+
+#define mul_add(r, a, bl, bh, c) \
+ { \
+ BN_ULONG l, h; \
+ \
+ h = (a); \
+ l = LBITS(h); \
+ h = HBITS(h); \
+ mul64(l, h, (bl), (bh)); \
+ \
+ /* non-multiply part */ \
+ l = (l + (c)) & BN_MASK2; \
+ if (l < (c)) \
+ h++; \
+ (c) = (r); \
+ l = (l + (c)) & BN_MASK2; \
+ if (l < (c)) \
+ h++; \
+ (c) = h & BN_MASK2; \
+ (r) = l; \
+ }
+
+#define mul(r, a, bl, bh, c) \
+ { \
+ BN_ULONG l, h; \
+ \
+ h = (a); \
+ l = LBITS(h); \
+ h = HBITS(h); \
+ mul64(l, h, (bl), (bh)); \
+ \
+ /* non-multiply part */ \
+ l += (c); \
+ if ((l & BN_MASK2) < (c)) \
+ h++; \
+ (c) = h & BN_MASK2; \
+ (r) = l & BN_MASK2; \
+ }
+#endif /* !BN_LLONG */
+
+#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
+
+BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
+ BN_ULONG w) {
+ BN_ULONG c1 = 0;
+
+ assert(num >= 0);
+ if (num <= 0) {
+ return c1;
+ }
+
+ while (num & ~3) {
+ mul_add(rp[0], ap[0], w, c1);
+ mul_add(rp[1], ap[1], w, c1);
+ mul_add(rp[2], ap[2], w, c1);
+ mul_add(rp[3], ap[3], w, c1);
+ ap += 4;
+ rp += 4;
+ num -= 4;
+ }
+
+ while (num) {
+ mul_add(rp[0], ap[0], w, c1);
+ ap++;
+ rp++;
+ num--;
+ }
+
+ return c1;
+}
+
+BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) {
+ BN_ULONG c1 = 0;
+
+ assert(num >= 0);
+ if (num <= 0) {
+ return c1;
+ }
+
+ while (num & ~3) {
+ mul(rp[0], ap[0], w, c1);
+ mul(rp[1], ap[1], w, c1);
+ mul(rp[2], ap[2], w, c1);
+ mul(rp[3], ap[3], w, c1);
+ ap += 4;
+ rp += 4;
+ num -= 4;
+ }
+ while (num) {
+ mul(rp[0], ap[0], w, c1);
+ ap++;
+ rp++;
+ num--;
+ }
+ return c1;
+}
+
+void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) {
+ assert(n >= 0);
+ if (n <= 0) {
+ return;
+ }
+
+ while (n & ~3) {
+ sqr(r[0], r[1], a[0]);
+ sqr(r[2], r[3], a[1]);
+ sqr(r[4], r[5], a[2]);
+ sqr(r[6], r[7], a[3]);
+ a += 4;
+ r += 8;
+ n -= 4;
+ }
+ while (n) {
+ sqr(r[0], r[1], a[0]);
+ a++;
+ r += 2;
+ n--;
+ }
+}
+
+#else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
+
+BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
+ BN_ULONG w) {
+ BN_ULONG c = 0;
+ BN_ULONG bl, bh;
+
+ assert(num >= 0);
+ if (num <= 0) {
+ return (BN_ULONG)0;
+ }
+
+ bl = LBITS(w);
+ bh = HBITS(w);
+
+ while (num & ~3) {
+ mul_add(rp[0], ap[0], bl, bh, c);
+ mul_add(rp[1], ap[1], bl, bh, c);
+ mul_add(rp[2], ap[2], bl, bh, c);
+ mul_add(rp[3], ap[3], bl, bh, c);
+ ap += 4;
+ rp += 4;
+ num -= 4;
+ }
+ while (num) {
+ mul_add(rp[0], ap[0], bl, bh, c);
+ ap++;
+ rp++;
+ num--;
+ }
+ return c;
+}
+
+BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) {
+ BN_ULONG carry = 0;
+ BN_ULONG bl, bh;
+
+ assert(num >= 0);
+ if (num <= 0) {
+ return (BN_ULONG)0;
+ }
+
+ bl = LBITS(w);
+ bh = HBITS(w);
+
+ while (num & ~3) {
+ mul(rp[0], ap[0], bl, bh, carry);
+ mul(rp[1], ap[1], bl, bh, carry);
+ mul(rp[2], ap[2], bl, bh, carry);
+ mul(rp[3], ap[3], bl, bh, carry);
+ ap += 4;
+ rp += 4;
+ num -= 4;
+ }
+ while (num) {
+ mul(rp[0], ap[0], bl, bh, carry);
+ ap++;
+ rp++;
+ num--;
+ }
+ return carry;
+}
+
+void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) {
+ assert(n >= 0);
+ if (n <= 0) {
+ return;
+ }
+
+ while (n & ~3) {
+ sqr64(r[0], r[1], a[0]);
+ sqr64(r[2], r[3], a[1]);
+ sqr64(r[4], r[5], a[2]);
+ sqr64(r[6], r[7], a[3]);
+ a += 4;
+ r += 8;
+ n -= 4;
+ }
+ while (n) {
+ sqr64(r[0], r[1], a[0]);
+ a++;
+ r += 2;
+ n--;
+ }
+}
+
+#endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
+
+#if defined(BN_LLONG)
+
+BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
+ return (BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2) | l) / (BN_ULLONG)d);
+}
+
+#else
+
+/* Divide h,l by d and return the result. */
+BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
+ BN_ULONG dh, dl, q, ret = 0, th, tl, t;
+ int i, count = 2;
+
+ if (d == 0) {
+ return BN_MASK2;
+ }
+
+ i = BN_num_bits_word(d);
+ assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
+
+ i = BN_BITS2 - i;
+ if (h >= d) {
+ h -= d;
+ }
+
+ if (i) {
+ d <<= i;
+ h = (h << i) | (l >> (BN_BITS2 - i));
+ l <<= i;
+ }
+ dh = (d & BN_MASK2h) >> BN_BITS4;
+ dl = (d & BN_MASK2l);
+ for (;;) {
+ if ((h >> BN_BITS4) == dh) {
+ q = BN_MASK2l;
+ } else {
+ q = h / dh;
+ }
+
+ th = q * dh;
+ tl = dl * q;
+ for (;;) {
+ t = h - th;
+ if ((t & BN_MASK2h) ||
+ ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
+ break;
+ }
+ q--;
+ th -= dh;
+ tl -= dl;
+ }
+ t = (tl >> BN_BITS4);
+ tl = (tl << BN_BITS4) & BN_MASK2h;
+ th += t;
+
+ if (l < tl) {
+ th++;
+ }
+ l -= tl;
+ if (h < th) {
+ h += d;
+ q--;
+ }
+ h -= th;
+
+ if (--count == 0) {
+ break;
+ }
+
+ ret = q << BN_BITS4;
+ h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
+ l = (l & BN_MASK2l) << BN_BITS4;
+ }
+
+ ret |= q;
+ return ret;
+}
+
+#endif /* !defined(BN_LLONG) */
+
+#ifdef BN_LLONG
+BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+ int n) {
+ BN_ULLONG ll = 0;
+
+ assert(n >= 0);
+ if (n <= 0) {
+ return (BN_ULONG)0;
+ }
+
+ while (n & ~3) {
+ ll += (BN_ULLONG)a[0] + b[0];
+ r[0] = (BN_ULONG)ll & BN_MASK2;
+ ll >>= BN_BITS2;
+ ll += (BN_ULLONG)a[1] + b[1];
+ r[1] = (BN_ULONG)ll & BN_MASK2;
+ ll >>= BN_BITS2;
+ ll += (BN_ULLONG)a[2] + b[2];
+ r[2] = (BN_ULONG)ll & BN_MASK2;
+ ll >>= BN_BITS2;
+ ll += (BN_ULLONG)a[3] + b[3];
+ r[3] = (BN_ULONG)ll & BN_MASK2;
+ ll >>= BN_BITS2;
+ a += 4;
+ b += 4;
+ r += 4;
+ n -= 4;
+ }
+ while (n) {
+ ll += (BN_ULLONG)a[0] + b[0];
+ r[0] = (BN_ULONG)ll & BN_MASK2;
+ ll >>= BN_BITS2;
+ a++;
+ b++;
+ r++;
+ n--;
+ }
+ return (BN_ULONG)ll;
+}
+
+#else /* !BN_LLONG */
+
+BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+ int n) {
+ BN_ULONG c, l, t;
+
+ assert(n >= 0);
+ if (n <= 0) {
+ return (BN_ULONG)0;
+ }
+
+ c = 0;
+ while (n & ~3) {
+ t = a[0];
+ t = (t + c) & BN_MASK2;
+ c = (t < c);
+ l = (t + b[0]) & BN_MASK2;
+ c += (l < t);
+ r[0] = l;
+ t = a[1];
+ t = (t + c) & BN_MASK2;
+ c = (t < c);
+ l = (t + b[1]) & BN_MASK2;
+ c += (l < t);
+ r[1] = l;
+ t = a[2];
+ t = (t + c) & BN_MASK2;
+ c = (t < c);
+ l = (t + b[2]) & BN_MASK2;
+ c += (l < t);
+ r[2] = l;
+ t = a[3];
+ t = (t + c) & BN_MASK2;
+ c = (t < c);
+ l = (t + b[3]) & BN_MASK2;
+ c += (l < t);
+ r[3] = l;
+ a += 4;
+ b += 4;
+ r += 4;
+ n -= 4;
+ }
+ while (n) {
+ t = a[0];
+ t = (t + c) & BN_MASK2;
+ c = (t < c);
+ l = (t + b[0]) & BN_MASK2;
+ c += (l < t);
+ r[0] = l;
+ a++;
+ b++;
+ r++;
+ n--;
+ }
+ return (BN_ULONG)c;
+}
+
+#endif /* !BN_LLONG */
+
+BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+ int n) {
+ BN_ULONG t1, t2;
+ int c = 0;
+
+ assert(n >= 0);
+ if (n <= 0) {
+ return (BN_ULONG)0;
+ }
+
+ while (n & ~3) {
+ t1 = a[0];
+ t2 = b[0];
+ r[0] = (t1 - t2 - c) & BN_MASK2;
+ if (t1 != t2)
+ c = (t1 < t2);
+ t1 = a[1];
+ t2 = b[1];
+ r[1] = (t1 - t2 - c) & BN_MASK2;
+ if (t1 != t2)
+ c = (t1 < t2);
+ t1 = a[2];
+ t2 = b[2];
+ r[2] = (t1 - t2 - c) & BN_MASK2;
+ if (t1 != t2)
+ c = (t1 < t2);
+ t1 = a[3];
+ t2 = b[3];
+ r[3] = (t1 - t2 - c) & BN_MASK2;
+ if (t1 != t2)
+ c = (t1 < t2);
+ a += 4;
+ b += 4;
+ r += 4;
+ n -= 4;
+ }
+ while (n) {
+ t1 = a[0];
+ t2 = b[0];
+ r[0] = (t1 - t2 - c) & BN_MASK2;
+ if (t1 != t2)
+ c = (t1 < t2);
+ a++;
+ b++;
+ r++;
+ n--;
+ }
+ return c;
+}
+
+/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
+/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
+/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
+/* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
+
+#ifdef BN_LLONG
+
+/* Keep in mind that additions to multiplication result can not overflow,
+ * because its high half cannot be all-ones. */
+#define mul_add_c(a, b, c0, c1, c2) \
+ do { \
+ BN_ULONG hi; \
+ BN_ULLONG t = (BN_ULLONG)(a) * (b); \
+ t += c0; /* no carry */ \
+ c0 = (BN_ULONG)Lw(t); \
+ hi = (BN_ULONG)Hw(t); \
+ c1 = (c1 + hi) & BN_MASK2; \
+ if (c1 < hi) \
+ c2++; \
+ } while (0)
+
+#define mul_add_c2(a, b, c0, c1, c2) \
+ do { \
+ BN_ULONG hi; \
+ BN_ULLONG t = (BN_ULLONG)(a) * (b); \
+ BN_ULLONG tt = t + c0; /* no carry */ \
+ c0 = (BN_ULONG)Lw(tt); \
+ hi = (BN_ULONG)Hw(tt); \
+ c1 = (c1 + hi) & BN_MASK2; \
+ if (c1 < hi) \
+ c2++; \
+ t += c0; /* no carry */ \
+ c0 = (BN_ULONG)Lw(t); \
+ hi = (BN_ULONG)Hw(t); \
+ c1 = (c1 + hi) & BN_MASK2; \
+ if (c1 < hi) \
+ c2++; \
+ } while (0)
+
+#define sqr_add_c(a, i, c0, c1, c2) \
+ do { \
+ BN_ULONG hi; \
+ BN_ULLONG t = (BN_ULLONG)a[i] * a[i]; \
+ t += c0; /* no carry */ \
+ c0 = (BN_ULONG)Lw(t); \
+ hi = (BN_ULONG)Hw(t); \
+ c1 = (c1 + hi) & BN_MASK2; \
+ if (c1 < hi) \
+ c2++; \
+ } while (0)
+
+#define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2)
+
+#elif defined(BN_UMULT_LOHI)
+
+/* Keep in mind that additions to hi can not overflow, because the high word of
+ * a multiplication result cannot be all-ones. */
+#define mul_add_c(a, b, c0, c1, c2) \
+ do { \
+ BN_ULONG ta = (a), tb = (b); \
+ BN_ULONG lo, hi; \
+ BN_UMULT_LOHI(lo, hi, ta, tb); \
+ c0 += lo; \
+ hi += (c0 < lo) ? 1 : 0; \
+ c1 += hi; \
+ c2 += (c1 < hi) ? 1 : 0; \
+ } while (0)
+
+#define mul_add_c2(a, b, c0, c1, c2) \
+ do { \
+ BN_ULONG ta = (a), tb = (b); \
+ BN_ULONG lo, hi, tt; \
+ BN_UMULT_LOHI(lo, hi, ta, tb); \
+ c0 += lo; \
+ tt = hi + ((c0 < lo) ? 1 : 0); \
+ c1 += tt; \
+ c2 += (c1 < tt) ? 1 : 0; \
+ c0 += lo; \
+ hi += (c0 < lo) ? 1 : 0; \
+ c1 += hi; \
+ c2 += (c1 < hi) ? 1 : 0; \
+ } while (0)
+
+#define sqr_add_c(a, i, c0, c1, c2) \
+ do { \
+ BN_ULONG ta = (a)[i]; \
+ BN_ULONG lo, hi; \
+ BN_UMULT_LOHI(lo, hi, ta, ta); \
+ c0 += lo; \
+ hi += (c0 < lo) ? 1 : 0; \
+ c1 += hi; \
+ c2 += (c1 < hi) ? 1 : 0; \
+ } while (0)
+
+#define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2)
+
+#else /* !BN_LLONG */
+
+/* Keep in mind that additions to hi can not overflow, because
+ * the high word of a multiplication result cannot be all-ones. */
+
+#define mul_add_c(a, b, c0, c1, c2) \
+ do { \
+ BN_ULONG lo = LBITS(a), hi = HBITS(a); \
+ BN_ULONG bl = LBITS(b), bh = HBITS(b); \
+ mul64(lo, hi, bl, bh); \
+ c0 = (c0 + lo) & BN_MASK2; \
+ if (c0 < lo) \
+ hi++; \
+ c1 = (c1 + hi) & BN_MASK2; \
+ if (c1 < hi) \
+ c2++; \
+ } while (0)
+
+#define mul_add_c2(a, b, c0, c1, c2) \
+ do { \
+ BN_ULONG tt; \
+ BN_ULONG lo = LBITS(a), hi = HBITS(a); \
+ BN_ULONG bl = LBITS(b), bh = HBITS(b); \
+ mul64(lo, hi, bl, bh); \
+ tt = hi; \
+ c0 = (c0 + lo) & BN_MASK2; \
+ if (c0 < lo) \
+ tt++; \
+ c1 = (c1 + tt) & BN_MASK2; \
+ if (c1 < tt) \
+ c2++; \
+ c0 = (c0 + lo) & BN_MASK2; \
+ if (c0 < lo) \
+ hi++; \
+ c1 = (c1 + hi) & BN_MASK2; \
+ if (c1 < hi) \
+ c2++; \
+ } while (0)
+
+#define sqr_add_c(a, i, c0, c1, c2) \
+ do { \
+ BN_ULONG lo, hi; \
+ sqr64(lo, hi, (a)[i]); \
+ c0 = (c0 + lo) & BN_MASK2; \
+ if (c0 < lo) \
+ hi++; \
+ c1 = (c1 + hi) & BN_MASK2; \
+ if (c1 < hi) \
+ c2++; \
+ } while (0)
+
+#define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2)
+#endif /* !BN_LLONG */
+
+void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) {
+ BN_ULONG c1, c2, c3;
+
+ c1 = 0;
+ c2 = 0;
+ c3 = 0;
+ mul_add_c(a[0], b[0], c1, c2, c3);
+ r[0] = c1;
+ c1 = 0;
+ mul_add_c(a[0], b[1], c2, c3, c1);
+ mul_add_c(a[1], b[0], c2, c3, c1);
+ r[1] = c2;
+ c2 = 0;
+ mul_add_c(a[2], b[0], c3, c1, c2);
+ mul_add_c(a[1], b[1], c3, c1, c2);
+ mul_add_c(a[0], b[2], c3, c1, c2);
+ r[2] = c3;
+ c3 = 0;
+ mul_add_c(a[0], b[3], c1, c2, c3);
+ mul_add_c(a[1], b[2], c1, c2, c3);
+ mul_add_c(a[2], b[1], c1, c2, c3);
+ mul_add_c(a[3], b[0], c1, c2, c3);
+ r[3] = c1;
+ c1 = 0;
+ mul_add_c(a[4], b[0], c2, c3, c1);
+ mul_add_c(a[3], b[1], c2, c3, c1);
+ mul_add_c(a[2], b[2], c2, c3, c1);
+ mul_add_c(a[1], b[3], c2, c3, c1);
+ mul_add_c(a[0], b[4], c2, c3, c1);
+ r[4] = c2;
+ c2 = 0;
+ mul_add_c(a[0], b[5], c3, c1, c2);
+ mul_add_c(a[1], b[4], c3, c1, c2);
+ mul_add_c(a[2], b[3], c3, c1, c2);
+ mul_add_c(a[3], b[2], c3, c1, c2);
+ mul_add_c(a[4], b[1], c3, c1, c2);
+ mul_add_c(a[5], b[0], c3, c1, c2);
+ r[5] = c3;
+ c3 = 0;
+ mul_add_c(a[6], b[0], c1, c2, c3);
+ mul_add_c(a[5], b[1], c1, c2, c3);
+ mul_add_c(a[4], b[2], c1, c2, c3);
+ mul_add_c(a[3], b[3], c1, c2, c3);
+ mul_add_c(a[2], b[4], c1, c2, c3);
+ mul_add_c(a[1], b[5], c1, c2, c3);
+ mul_add_c(a[0], b[6], c1, c2, c3);
+ r[6] = c1;
+ c1 = 0;
+ mul_add_c(a[0], b[7], c2, c3, c1);
+ mul_add_c(a[1], b[6], c2, c3, c1);
+ mul_add_c(a[2], b[5], c2, c3, c1);
+ mul_add_c(a[3], b[4], c2, c3, c1);
+ mul_add_c(a[4], b[3], c2, c3, c1);
+ mul_add_c(a[5], b[2], c2, c3, c1);
+ mul_add_c(a[6], b[1], c2, c3, c1);
+ mul_add_c(a[7], b[0], c2, c3, c1);
+ r[7] = c2;
+ c2 = 0;
+ mul_add_c(a[7], b[1], c3, c1, c2);
+ mul_add_c(a[6], b[2], c3, c1, c2);
+ mul_add_c(a[5], b[3], c3, c1, c2);
+ mul_add_c(a[4], b[4], c3, c1, c2);
+ mul_add_c(a[3], b[5], c3, c1, c2);
+ mul_add_c(a[2], b[6], c3, c1, c2);
+ mul_add_c(a[1], b[7], c3, c1, c2);
+ r[8] = c3;
+ c3 = 0;
+ mul_add_c(a[2], b[7], c1, c2, c3);
+ mul_add_c(a[3], b[6], c1, c2, c3);
+ mul_add_c(a[4], b[5], c1, c2, c3);
+ mul_add_c(a[5], b[4], c1, c2, c3);
+ mul_add_c(a[6], b[3], c1, c2, c3);
+ mul_add_c(a[7], b[2], c1, c2, c3);
+ r[9] = c1;
+ c1 = 0;
+ mul_add_c(a[7], b[3], c2, c3, c1);
+ mul_add_c(a[6], b[4], c2, c3, c1);
+ mul_add_c(a[5], b[5], c2, c3, c1);
+ mul_add_c(a[4], b[6], c2, c3, c1);
+ mul_add_c(a[3], b[7], c2, c3, c1);
+ r[10] = c2;
+ c2 = 0;
+ mul_add_c(a[4], b[7], c3, c1, c2);
+ mul_add_c(a[5], b[6], c3, c1, c2);
+ mul_add_c(a[6], b[5], c3, c1, c2);
+ mul_add_c(a[7], b[4], c3, c1, c2);
+ r[11] = c3;
+ c3 = 0;
+ mul_add_c(a[7], b[5], c1, c2, c3);
+ mul_add_c(a[6], b[6], c1, c2, c3);
+ mul_add_c(a[5], b[7], c1, c2, c3);
+ r[12] = c1;
+ c1 = 0;
+ mul_add_c(a[6], b[7], c2, c3, c1);
+ mul_add_c(a[7], b[6], c2, c3, c1);
+ r[13] = c2;
+ c2 = 0;
+ mul_add_c(a[7], b[7], c3, c1, c2);
+ r[14] = c3;
+ r[15] = c1;
+}
+
+void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) {
+ BN_ULONG c1, c2, c3;
+
+ c1 = 0;
+ c2 = 0;
+ c3 = 0;
+ mul_add_c(a[0], b[0], c1, c2, c3);
+ r[0] = c1;
+ c1 = 0;
+ mul_add_c(a[0], b[1], c2, c3, c1);
+ mul_add_c(a[1], b[0], c2, c3, c1);
+ r[1] = c2;
+ c2 = 0;
+ mul_add_c(a[2], b[0], c3, c1, c2);
+ mul_add_c(a[1], b[1], c3, c1, c2);
+ mul_add_c(a[0], b[2], c3, c1, c2);
+ r[2] = c3;
+ c3 = 0;
+ mul_add_c(a[0], b[3], c1, c2, c3);
+ mul_add_c(a[1], b[2], c1, c2, c3);
+ mul_add_c(a[2], b[1], c1, c2, c3);
+ mul_add_c(a[3], b[0], c1, c2, c3);
+ r[3] = c1;
+ c1 = 0;
+ mul_add_c(a[3], b[1], c2, c3, c1);
+ mul_add_c(a[2], b[2], c2, c3, c1);
+ mul_add_c(a[1], b[3], c2, c3, c1);
+ r[4] = c2;
+ c2 = 0;
+ mul_add_c(a[2], b[3], c3, c1, c2);
+ mul_add_c(a[3], b[2], c3, c1, c2);
+ r[5] = c3;
+ c3 = 0;
+ mul_add_c(a[3], b[3], c1, c2, c3);
+ r[6] = c1;
+ r[7] = c2;
+}
+
+void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) {
+ BN_ULONG c1, c2, c3;
+
+ c1 = 0;
+ c2 = 0;
+ c3 = 0;
+ sqr_add_c(a, 0, c1, c2, c3);
+ r[0] = c1;
+ c1 = 0;
+ sqr_add_c2(a, 1, 0, c2, c3, c1);
+ r[1] = c2;
+ c2 = 0;
+ sqr_add_c(a, 1, c3, c1, c2);
+ sqr_add_c2(a, 2, 0, c3, c1, c2);
+ r[2] = c3;
+ c3 = 0;
+ sqr_add_c2(a, 3, 0, c1, c2, c3);
+ sqr_add_c2(a, 2, 1, c1, c2, c3);
+ r[3] = c1;
+ c1 = 0;
+ sqr_add_c(a, 2, c2, c3, c1);
+ sqr_add_c2(a, 3, 1, c2, c3, c1);
+ sqr_add_c2(a, 4, 0, c2, c3, c1);
+ r[4] = c2;
+ c2 = 0;
+ sqr_add_c2(a, 5, 0, c3, c1, c2);
+ sqr_add_c2(a, 4, 1, c3, c1, c2);
+ sqr_add_c2(a, 3, 2, c3, c1, c2);
+ r[5] = c3;
+ c3 = 0;
+ sqr_add_c(a, 3, c1, c2, c3);
+ sqr_add_c2(a, 4, 2, c1, c2, c3);
+ sqr_add_c2(a, 5, 1, c1, c2, c3);
+ sqr_add_c2(a, 6, 0, c1, c2, c3);
+ r[6] = c1;
+ c1 = 0;
+ sqr_add_c2(a, 7, 0, c2, c3, c1);
+ sqr_add_c2(a, 6, 1, c2, c3, c1);
+ sqr_add_c2(a, 5, 2, c2, c3, c1);
+ sqr_add_c2(a, 4, 3, c2, c3, c1);
+ r[7] = c2;
+ c2 = 0;
+ sqr_add_c(a, 4, c3, c1, c2);
+ sqr_add_c2(a, 5, 3, c3, c1, c2);
+ sqr_add_c2(a, 6, 2, c3, c1, c2);
+ sqr_add_c2(a, 7, 1, c3, c1, c2);
+ r[8] = c3;
+ c3 = 0;
+ sqr_add_c2(a, 7, 2, c1, c2, c3);
+ sqr_add_c2(a, 6, 3, c1, c2, c3);
+ sqr_add_c2(a, 5, 4, c1, c2, c3);
+ r[9] = c1;
+ c1 = 0;
+ sqr_add_c(a, 5, c2, c3, c1);
+ sqr_add_c2(a, 6, 4, c2, c3, c1);
+ sqr_add_c2(a, 7, 3, c2, c3, c1);
+ r[10] = c2;
+ c2 = 0;
+ sqr_add_c2(a, 7, 4, c3, c1, c2);
+ sqr_add_c2(a, 6, 5, c3, c1, c2);
+ r[11] = c3;
+ c3 = 0;
+ sqr_add_c(a, 6, c1, c2, c3);
+ sqr_add_c2(a, 7, 5, c1, c2, c3);
+ r[12] = c1;
+ c1 = 0;
+ sqr_add_c2(a, 7, 6, c2, c3, c1);
+ r[13] = c2;
+ c2 = 0;
+ sqr_add_c(a, 7, c3, c1, c2);
+ r[14] = c3;
+ r[15] = c1;
+}
+
+void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) {
+ BN_ULONG c1, c2, c3;
+
+ c1 = 0;
+ c2 = 0;
+ c3 = 0;
+ sqr_add_c(a, 0, c1, c2, c3);
+ r[0] = c1;
+ c1 = 0;
+ sqr_add_c2(a, 1, 0, c2, c3, c1);
+ r[1] = c2;
+ c2 = 0;
+ sqr_add_c(a, 1, c3, c1, c2);
+ sqr_add_c2(a, 2, 0, c3, c1, c2);
+ r[2] = c3;
+ c3 = 0;
+ sqr_add_c2(a, 3, 0, c1, c2, c3);
+ sqr_add_c2(a, 2, 1, c1, c2, c3);
+ r[3] = c1;
+ c1 = 0;
+ sqr_add_c(a, 2, c2, c3, c1);
+ sqr_add_c2(a, 3, 1, c2, c3, c1);
+ r[4] = c2;
+ c2 = 0;
+ sqr_add_c2(a, 3, 2, c3, c1, c2);
+ r[5] = c3;
+ c3 = 0;
+ sqr_add_c(a, 3, c1, c2, c3);
+ r[6] = c1;
+ r[7] = c2;
+}
+
+#if defined(OPENSSL_NO_ASM) || (!defined(OPENSSL_ARM) && !defined(OPENSSL_X86_64))
+/* This is essentially reference implementation, which may or may not
+ * result in performance improvement. E.g. on IA-32 this routine was
+ * observed to give 40% faster rsa1024 private key operations and 10%
+ * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
+ * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
+ * reference implementation, one to be used as starting point for
+ * platform-specific assembler. Mentioned numbers apply to compiler
+ * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
+ * can vary not only from platform to platform, but even for compiler
+ * versions. Assembler vs. assembler improvement coefficients can
+ * [and are known to] differ and are to be documented elsewhere. */
+int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
+ const BN_ULONG *np, const BN_ULONG *n0p, int num) {
+ BN_ULONG c0, c1, ml, *tp, n0;
+#ifdef mul64
+ BN_ULONG mh;
+#endif
+ volatile BN_ULONG *vp;
+ int i = 0, j;
+
+#if 0 /* template for platform-specific implementation */
+ if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
+#endif
+ vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
+
+ n0 = *n0p;
+
+ c0 = 0;
+ ml = bp[0];
+#ifdef mul64
+ mh = HBITS(ml);
+ ml = LBITS(ml);
+ for (j = 0; j < num; ++j)
+ mul(tp[j], ap[j], ml, mh, c0);
+#else
+ for (j = 0; j < num; ++j)
+ mul(tp[j], ap[j], ml, c0);
+#endif
+
+ tp[num] = c0;
+ tp[num + 1] = 0;
+ goto enter;
+
+ for (i = 0; i < num; i++) {
+ c0 = 0;
+ ml = bp[i];
+#ifdef mul64
+ mh = HBITS(ml);
+ ml = LBITS(ml);
+ for (j = 0; j < num; ++j)
+ mul_add(tp[j], ap[j], ml, mh, c0);
+#else
+ for (j = 0; j < num; ++j)
+ mul_add(tp[j], ap[j], ml, c0);
+#endif
+ c1 = (tp[num] + c0) & BN_MASK2;
+ tp[num] = c1;
+ tp[num + 1] = (c1 < c0 ? 1 : 0);
+ enter:
+ c1 = tp[0];
+ ml = (c1 * n0) & BN_MASK2;
+ c0 = 0;
+#ifdef mul64
+ mh = HBITS(ml);
+ ml = LBITS(ml);
+ mul_add(c1, np[0], ml, mh, c0);
+#else
+ mul_add(c1, ml, np[0], c0);
+#endif
+ for (j = 1; j < num; j++) {
+ c1 = tp[j];
+#ifdef mul64
+ mul_add(c1, np[j], ml, mh, c0);
+#else
+ mul_add(c1, ml, np[j], c0);
+#endif
+ tp[j - 1] = c1 & BN_MASK2;
+ }
+ c1 = (tp[num] + c0) & BN_MASK2;
+ tp[num - 1] = c1;
+ tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
+ }
+
+ if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
+ c0 = bn_sub_words(rp, tp, np, num);
+ if (tp[num] != 0 || c0 == 0) {
+ for (i = 0; i < num + 2; i++)
+ vp[i] = 0;
+ return 1;
+ }
+ }
+ for (i = 0; i < num; i++)
+ rp[i] = tp[i], vp[i] = 0;
+ vp[num] = 0;
+ vp[num + 1] = 0;
+ return 1;
+}
+#endif
+
+#endif