summaryrefslogtreecommitdiffstats
path: root/src/crypto/ec/p256-x86_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/ec/p256-x86_64.c')
-rw-r--r--src/crypto/ec/p256-x86_64.c701
1 files changed, 701 insertions, 0 deletions
diff --git a/src/crypto/ec/p256-x86_64.c b/src/crypto/ec/p256-x86_64.c
new file mode 100644
index 0000000..09816ad
--- /dev/null
+++ b/src/crypto/ec/p256-x86_64.c
@@ -0,0 +1,701 @@
+/* Copyright (c) 2014, Intel Corporation.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
+
+/* Developers and authors:
+ * Shay Gueron (1, 2), and Vlad Krasnov (1)
+ * (1) Intel Corporation, Israel Development Center
+ * (2) University of Haifa
+ * Reference:
+ * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
+ * 256 Bit Primes" */
+
+#include <openssl/ec.h>
+
+#include <stdint.h>
+#include <string.h>
+
+#include <openssl/bn.h>
+#include <openssl/crypto.h>
+#include <openssl/err.h>
+
+#include "../bn/internal.h"
+#include "../ec/internal.h"
+#include "../internal.h"
+
+
+#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
+ !defined(OPENSSL_SMALL)
+
+#if BN_BITS2 != 64
+#define TOBN(hi, lo) lo, hi
+#else
+#define TOBN(hi, lo) ((BN_ULONG)hi << 32 | lo)
+#endif
+
+#if defined(__GNUC__)
+#define ALIGN32 __attribute((aligned(32)))
+#elif defined(_MSC_VER)
+#define ALIGN32 __declspec(align(32))
+#else
+#define ALIGN32
+#endif
+
+#define ALIGNPTR(p, N) ((uint8_t *)p + N - (size_t)p % N)
+#define P256_LIMBS (256 / BN_BITS2)
+
+typedef struct {
+ BN_ULONG X[P256_LIMBS];
+ BN_ULONG Y[P256_LIMBS];
+ BN_ULONG Z[P256_LIMBS];
+} P256_POINT;
+
+typedef struct {
+ BN_ULONG X[P256_LIMBS];
+ BN_ULONG Y[P256_LIMBS];
+} P256_POINT_AFFINE;
+
+typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
+
+/* Functions implemented in assembly */
+
+/* Modular mul by 2: res = 2*a mod P */
+void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
+ const BN_ULONG a[P256_LIMBS]);
+/* Modular div by 2: res = a/2 mod P */
+void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
+ const BN_ULONG a[P256_LIMBS]);
+/* Modular mul by 3: res = 3*a mod P */
+void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
+ const BN_ULONG a[P256_LIMBS]);
+/* Modular add: res = a+b mod P */
+void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS],
+ const BN_ULONG b[P256_LIMBS]);
+/* Modular sub: res = a-b mod P */
+void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS],
+ const BN_ULONG b[P256_LIMBS]);
+/* Modular neg: res = -a mod P */
+void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
+/* Montgomery mul: res = a*b*2^-256 mod P */
+void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
+ const BN_ULONG a[P256_LIMBS],
+ const BN_ULONG b[P256_LIMBS]);
+/* Montgomery sqr: res = a*a*2^-256 mod P */
+void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
+ const BN_ULONG a[P256_LIMBS]);
+/* Convert a number from Montgomery domain, by multiplying with 1 */
+void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
+ const BN_ULONG in[P256_LIMBS]);
+/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
+void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
+ const BN_ULONG in[P256_LIMBS]);
+/* Functions that perform constant time access to the precomputed tables */
+void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT *in_t, int index);
+void ecp_nistz256_select_w7(P256_POINT_AFFINE *val,
+ const P256_POINT_AFFINE *in_t, int index);
+
+/* One converted into the Montgomery domain */
+static const BN_ULONG ONE[P256_LIMBS] = {
+ TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
+ TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
+};
+
+/* Precomputed tables for the default generator */
+#include "p256-x86_64-table.h"
+
+/* Recode window to a signed digit, see ecp_nistputil.c for details */
+static unsigned booth_recode_w5(unsigned in) {
+ unsigned s, d;
+
+ s = ~((in >> 5) - 1);
+ d = (1 << 6) - in - 1;
+ d = (d & s) | (in & ~s);
+ d = (d >> 1) + (d & 1);
+
+ return (d << 1) + (s & 1);
+}
+
+static unsigned booth_recode_w7(unsigned in) {
+ unsigned s, d;
+
+ s = ~((in >> 7) - 1);
+ d = (1 << 8) - in - 1;
+ d = (d & s) | (in & ~s);
+ d = (d >> 1) + (d & 1);
+
+ return (d << 1) + (s & 1);
+}
+
+static void copy_conditional(BN_ULONG dst[P256_LIMBS],
+ const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
+ BN_ULONG mask1 = ((BN_ULONG)0) - move;
+ BN_ULONG mask2 = ~mask1;
+
+ dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
+ dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
+ dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
+ dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
+ if (P256_LIMBS == 8) {
+ dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
+ dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
+ dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
+ dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
+ }
+}
+
+static BN_ULONG is_zero(BN_ULONG in) {
+ in |= (0 - in);
+ in = ~in;
+ in &= BN_MASK2;
+ in >>= BN_BITS2 - 1;
+ return in;
+}
+
+static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
+ const BN_ULONG b[P256_LIMBS]) {
+ BN_ULONG res;
+
+ res = a[0] ^ b[0];
+ res |= a[1] ^ b[1];
+ res |= a[2] ^ b[2];
+ res |= a[3] ^ b[3];
+ if (P256_LIMBS == 8) {
+ res |= a[4] ^ b[4];
+ res |= a[5] ^ b[5];
+ res |= a[6] ^ b[6];
+ res |= a[7] ^ b[7];
+ }
+
+ return is_zero(res);
+}
+
+static BN_ULONG is_one(const BN_ULONG a[P256_LIMBS]) {
+ BN_ULONG res;
+
+ res = a[0] ^ ONE[0];
+ res |= a[1] ^ ONE[1];
+ res |= a[2] ^ ONE[2];
+ res |= a[3] ^ ONE[3];
+ if (P256_LIMBS == 8) {
+ res |= a[4] ^ ONE[4];
+ res |= a[5] ^ ONE[5];
+ res |= a[6] ^ ONE[6];
+ }
+
+ return is_zero(res);
+}
+
+void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
+void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a,
+ const P256_POINT *b);
+void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a,
+ const P256_POINT_AFFINE *b);
+
+/* r = in^-1 mod p */
+static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
+ const BN_ULONG in[P256_LIMBS]) {
+ /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
+ ffffffff
+ We use FLT and used poly-2 as exponent */
+ BN_ULONG p2[P256_LIMBS];
+ BN_ULONG p4[P256_LIMBS];
+ BN_ULONG p8[P256_LIMBS];
+ BN_ULONG p16[P256_LIMBS];
+ BN_ULONG p32[P256_LIMBS];
+ BN_ULONG res[P256_LIMBS];
+ int i;
+
+ ecp_nistz256_sqr_mont(res, in);
+ ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
+
+ ecp_nistz256_sqr_mont(res, p2);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
+
+ ecp_nistz256_sqr_mont(res, p4);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
+
+ ecp_nistz256_sqr_mont(res, p8);
+ for (i = 0; i < 7; i++) {
+ ecp_nistz256_sqr_mont(res, res);
+ }
+ ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
+
+ ecp_nistz256_sqr_mont(res, p16);
+ for (i = 0; i < 15; i++) {
+ ecp_nistz256_sqr_mont(res, res);
+ }
+ ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
+
+ ecp_nistz256_sqr_mont(res, p32);
+ for (i = 0; i < 31; i++) {
+ ecp_nistz256_sqr_mont(res, res);
+ }
+ ecp_nistz256_mul_mont(res, res, in);
+
+ for (i = 0; i < 32 * 4; i++) {
+ ecp_nistz256_sqr_mont(res, res);
+ }
+ ecp_nistz256_mul_mont(res, res, p32);
+
+ for (i = 0; i < 32; i++) {
+ ecp_nistz256_sqr_mont(res, res);
+ }
+ ecp_nistz256_mul_mont(res, res, p32);
+
+ for (i = 0; i < 16; i++) {
+ ecp_nistz256_sqr_mont(res, res);
+ }
+ ecp_nistz256_mul_mont(res, res, p16);
+
+ for (i = 0; i < 8; i++) {
+ ecp_nistz256_sqr_mont(res, res);
+ }
+ ecp_nistz256_mul_mont(res, res, p8);
+
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_mul_mont(res, res, p4);
+
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_mul_mont(res, res, p2);
+
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_sqr_mont(res, res);
+ ecp_nistz256_mul_mont(res, res, in);
+
+ memcpy(r, res, sizeof(res));
+}
+
+/* ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
+ * returns one if it fits. Otherwise it returns zero. */
+static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
+ const BIGNUM *in) {
+ if (in->top > P256_LIMBS) {
+ return 0;
+ }
+
+ memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS);
+ memcpy(out, in->d, sizeof(BN_ULONG) * in->top);
+ return 1;
+}
+
+/* r = sum(scalar[i]*point[i]) */
+static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
+ const BIGNUM **scalar,
+ const EC_POINT **point, int num,
+ BN_CTX *ctx) {
+ static const unsigned kWindowSize = 5;
+ static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
+
+ void *table_storage = OPENSSL_malloc(num * 16 * sizeof(P256_POINT) + 64);
+ uint8_t(*p_str)[33] = OPENSSL_malloc(num * 33 * sizeof(uint8_t));
+ const BIGNUM **scalars = OPENSSL_malloc(num * sizeof(BIGNUM *));
+
+ if (table_storage == NULL ||
+ p_str == NULL ||
+ scalars == NULL) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+
+ P256_POINT(*table)[16] = (void *)ALIGNPTR(table_storage, 64);
+
+ int i;
+ for (i = 0; i < num; i++) {
+ P256_POINT *row = table[i];
+
+ if (BN_num_bits(scalar[i]) > 256 || BN_is_negative(scalar[i])) {
+ BIGNUM *mod = BN_CTX_get(ctx);
+ if (mod == NULL) {
+ goto err;
+ }
+
+ if (!BN_nnmod(mod, scalar[i], &group->order, ctx)) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+ goto err;
+ }
+ scalars[i] = mod;
+ } else {
+ scalars[i] = scalar[i];
+ }
+
+ int j;
+ for (j = 0; j < scalars[i]->top * BN_BYTES; j += BN_BYTES) {
+ BN_ULONG d = scalars[i]->d[j / BN_BYTES];
+
+ p_str[i][j + 0] = d & 0xff;
+ p_str[i][j + 1] = (d >> 8) & 0xff;
+ p_str[i][j + 2] = (d >> 16) & 0xff;
+ p_str[i][j + 3] = (d >>= 24) & 0xff;
+ if (BN_BYTES == 8) {
+ d >>= 8;
+ p_str[i][j + 4] = d & 0xff;
+ p_str[i][j + 5] = (d >> 8) & 0xff;
+ p_str[i][j + 6] = (d >> 16) & 0xff;
+ p_str[i][j + 7] = (d >> 24) & 0xff;
+ }
+ }
+
+ for (; j < 33; j++) {
+ p_str[i][j] = 0;
+ }
+
+ /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
+ * not stored. All other values are actually stored with an offset of -1 in
+ * table. */
+
+ if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &point[i]->X) ||
+ !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &point[i]->Y) ||
+ !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &point[i]->Z)) {
+ OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
+ goto err;
+ }
+
+ ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
+ ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
+ ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
+ ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
+ ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
+ ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
+ ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
+ ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
+ ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
+ ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
+ ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
+ ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
+ ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
+ ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
+ ecp_nistz256_point_add(&row[16 - 1], &row[15 - 1], &row[1 - 1]);
+ }
+
+ BN_ULONG tmp[P256_LIMBS];
+ ALIGN32 P256_POINT h;
+ unsigned index = 255;
+ unsigned wvalue = p_str[0][(index - 1) / 8];
+ wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
+
+ ecp_nistz256_select_w5(r, table[0], booth_recode_w5(wvalue) >> 1);
+
+ while (index >= 5) {
+ for (i = (index == 255 ? 1 : 0); i < num; i++) {
+ unsigned off = (index - 1) / 8;
+
+ wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
+ wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
+
+ wvalue = booth_recode_w5(wvalue);
+
+ ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);
+
+ ecp_nistz256_neg(tmp, h.Y);
+ copy_conditional(h.Y, tmp, (wvalue & 1));
+
+ ecp_nistz256_point_add(r, r, &h);
+ }
+
+ index -= kWindowSize;
+
+ ecp_nistz256_point_double(r, r);
+ ecp_nistz256_point_double(r, r);
+ ecp_nistz256_point_double(r, r);
+ ecp_nistz256_point_double(r, r);
+ ecp_nistz256_point_double(r, r);
+ }
+
+ /* Final window */
+ for (i = 0; i < num; i++) {
+ wvalue = p_str[i][0];
+ wvalue = (wvalue << 1) & kMask;
+
+ wvalue = booth_recode_w5(wvalue);
+
+ ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);
+
+ ecp_nistz256_neg(tmp, h.Y);
+ copy_conditional(h.Y, tmp, wvalue & 1);
+
+ ecp_nistz256_point_add(r, r, &h);
+ }
+
+err:
+ OPENSSL_free(table_storage);
+ OPENSSL_free(p_str);
+ OPENSSL_free((BIGNUM**) scalars);
+}
+
+/* Coordinates of G, for which we have precomputed tables */
+const static BN_ULONG def_xG[P256_LIMBS] = {
+ TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
+ TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6),
+};
+
+const static BN_ULONG def_yG[P256_LIMBS] = {
+ TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
+ TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
+};
+
+/* ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
+ * generator. */
+static int ecp_nistz256_is_affine_G(const EC_POINT *generator) {
+ return (generator->X.top == P256_LIMBS) && (generator->Y.top == P256_LIMBS) &&
+ (generator->Z.top == (P256_LIMBS - P256_LIMBS / 8)) &&
+ is_equal(generator->X.d, def_xG) && is_equal(generator->Y.d, def_yG) &&
+ is_one(generator->Z.d);
+}
+
+/* r = scalar*G + sum(scalars[i]*points[i]) */
+static int ecp_nistz256_points_mul(
+ const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num,
+ const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) {
+ static const unsigned kWindowSize = 7;
+ static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
+
+ int ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
+ ALIGN32 union {
+ P256_POINT p;
+ P256_POINT_AFFINE a;
+ } t, p;
+
+ if (scalar == NULL && num == 0) {
+ return EC_POINT_set_to_infinity(group, r);
+ }
+
+ /* Need 256 bits for space for all coordinates. */
+ bn_wexpand(&r->X, P256_LIMBS);
+ bn_wexpand(&r->Y, P256_LIMBS);
+ bn_wexpand(&r->Z, P256_LIMBS);
+ r->X.top = P256_LIMBS;
+ r->Y.top = P256_LIMBS;
+ r->Z.top = P256_LIMBS;
+
+ const EC_POINT *generator = NULL;
+ if (scalar) {
+ generator = EC_GROUP_get0_generator(group);
+ if (generator == NULL) {
+ OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
+ goto err;
+ }
+
+ if (ecp_nistz256_is_affine_G(generator)) {
+ if (BN_num_bits(scalar) > 256 || BN_is_negative(scalar)) {
+ BIGNUM *tmp_scalar = BN_CTX_get(ctx);
+ if (tmp_scalar == NULL) {
+ goto err;
+ }
+
+ if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+ goto err;
+ }
+ scalar = tmp_scalar;
+ }
+
+ uint8_t p_str[33] = {0};
+ int i;
+ for (i = 0; i < scalar->top * BN_BYTES; i += BN_BYTES) {
+ BN_ULONG d = scalar->d[i / BN_BYTES];
+
+ p_str[i + 0] = d & 0xff;
+ p_str[i + 1] = (d >> 8) & 0xff;
+ p_str[i + 2] = (d >> 16) & 0xff;
+ p_str[i + 3] = (d >>= 24) & 0xff;
+ if (BN_BYTES == 8) {
+ d >>= 8;
+ p_str[i + 4] = d & 0xff;
+ p_str[i + 5] = (d >> 8) & 0xff;
+ p_str[i + 6] = (d >> 16) & 0xff;
+ p_str[i + 7] = (d >> 24) & 0xff;
+ }
+ }
+
+ for (; i < (int) sizeof(p_str); i++) {
+ p_str[i] = 0;
+ }
+
+ /* First window */
+ unsigned wvalue = (p_str[0] << 1) & kMask;
+ unsigned index = kWindowSize;
+
+ wvalue = booth_recode_w7(wvalue);
+
+ const PRECOMP256_ROW *const precomputed_table =
+ (const PRECOMP256_ROW *)ecp_nistz256_precomputed;
+ ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);
+
+ ecp_nistz256_neg(p.p.Z, p.p.Y);
+ copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
+
+ memcpy(p.p.Z, ONE, sizeof(ONE));
+
+ for (i = 1; i < 37; i++) {
+ unsigned off = (index - 1) / 8;
+ wvalue = p_str[off] | p_str[off + 1] << 8;
+ wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
+ index += kWindowSize;
+
+ wvalue = booth_recode_w7(wvalue);
+
+ ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);
+
+ ecp_nistz256_neg(t.p.Z, t.a.Y);
+ copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
+
+ ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
+ }
+ } else {
+ p_is_infinity = 1;
+ no_precomp_for_generator = 1;
+ }
+ } else {
+ p_is_infinity = 1;
+ }
+
+ if (no_precomp_for_generator) {
+ /* Without a precomputed table for the generator, it has to be handled like
+ * a normal point. */
+ const BIGNUM **new_scalars;
+ const EC_POINT **new_points;
+
+ /* Bound |num| so that all the possible overflows in the following can be
+ * excluded. */
+ if (0xffffff < num) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+
+ new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
+ if (new_scalars == NULL) {
+ OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+
+ new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
+ if (new_points == NULL) {
+ OPENSSL_free((BIGNUM**) new_scalars);
+ OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+
+ memcpy((BIGNUM**) new_scalars, scalars, num * sizeof(BIGNUM *));
+ new_scalars[num] = scalar;
+ memcpy((EC_POINT**) new_points, points, num * sizeof(EC_POINT *));
+ new_points[num] = generator;
+
+ scalars = new_scalars;
+ points = new_points;
+ num++;
+ }
+
+ if (num) {
+ P256_POINT *out = &t.p;
+ if (p_is_infinity) {
+ out = &p.p;
+ }
+
+ ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx);
+
+ if (!p_is_infinity) {
+ ecp_nistz256_point_add(&p.p, &p.p, out);
+ }
+ }
+
+ if (no_precomp_for_generator) {
+ OPENSSL_free((BIGNUM **) scalars);
+ OPENSSL_free((EC_POINT **) points);
+ }
+
+ memcpy(r->X.d, p.p.X, sizeof(p.p.X));
+ memcpy(r->Y.d, p.p.Y, sizeof(p.p.Y));
+ memcpy(r->Z.d, p.p.Z, sizeof(p.p.Z));
+ bn_correct_top(&r->X);
+ bn_correct_top(&r->Y);
+ bn_correct_top(&r->Z);
+
+ ret = 1;
+
+err:
+ return ret;
+}
+
+static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
+ BIGNUM *x, BIGNUM *y, BN_CTX *ctx) {
+ BN_ULONG z_inv2[P256_LIMBS];
+ BN_ULONG z_inv3[P256_LIMBS];
+ BN_ULONG x_aff[P256_LIMBS];
+ BN_ULONG y_aff[P256_LIMBS];
+ BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
+
+ if (EC_POINT_is_at_infinity(group, point)) {
+ OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
+ return 0;
+ }
+
+ if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
+ !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
+ !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
+ OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
+ return 0;
+ }
+
+ ecp_nistz256_mod_inverse(z_inv3, point_z);
+ ecp_nistz256_sqr_mont(z_inv2, z_inv3);
+ ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
+
+ if (x != NULL) {
+ bn_wexpand(x, P256_LIMBS);
+ x->top = P256_LIMBS;
+ ecp_nistz256_from_mont(x->d, x_aff);
+ bn_correct_top(x);
+ }
+
+ if (y != NULL) {
+ ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
+ ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
+ bn_wexpand(y, P256_LIMBS);
+ y->top = P256_LIMBS;
+ ecp_nistz256_from_mont(y->d, y_aff);
+ bn_correct_top(y);
+ }
+
+ return 1;
+}
+
+const EC_METHOD *EC_GFp_nistz256_method(void) {
+ static const EC_METHOD ret = {
+ ec_GFp_mont_group_init,
+ ec_GFp_mont_group_finish,
+ ec_GFp_mont_group_clear_finish,
+ ec_GFp_mont_group_copy,
+ ec_GFp_mont_group_set_curve,
+ ecp_nistz256_get_affine,
+ ecp_nistz256_points_mul,
+ 0, /* precompute_mult */
+ ec_GFp_mont_field_mul,
+ ec_GFp_mont_field_sqr,
+ ec_GFp_mont_field_encode,
+ ec_GFp_mont_field_decode,
+ ec_GFp_mont_field_set_to_one,
+ };
+
+ return &ret;
+}
+
+#endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
+ !defined(OPENSSL_SMALL) */