summaryrefslogtreecommitdiffstats
path: root/src/crypto/ec/p256-x86_64.c
blob: 09816ad9162ae6e8d1a5fda69f1ee970ec0713a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
/* Copyright (c) 2014, Intel Corporation.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

/* Developers and authors:
 * Shay Gueron (1, 2), and Vlad Krasnov (1)
 * (1) Intel Corporation, Israel Development Center
 * (2) University of Haifa
 * Reference:
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
 *                          256 Bit Primes" */

#include <openssl/ec.h>

#include <stdint.h>
#include <string.h>

#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>

#include "../bn/internal.h"
#include "../ec/internal.h"
#include "../internal.h"


#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
    !defined(OPENSSL_SMALL)

#if BN_BITS2 != 64
#define TOBN(hi, lo) lo, hi
#else
#define TOBN(hi, lo) ((BN_ULONG)hi << 32 | lo)
#endif

#if defined(__GNUC__)
#define ALIGN32 __attribute((aligned(32)))
#elif defined(_MSC_VER)
#define ALIGN32 __declspec(align(32))
#else
#define ALIGN32
#endif

#define ALIGNPTR(p, N) ((uint8_t *)p + N - (size_t)p % N)
#define P256_LIMBS (256 / BN_BITS2)

typedef struct {
  BN_ULONG X[P256_LIMBS];
  BN_ULONG Y[P256_LIMBS];
  BN_ULONG Z[P256_LIMBS];
} P256_POINT;

typedef struct {
  BN_ULONG X[P256_LIMBS];
  BN_ULONG Y[P256_LIMBS];
} P256_POINT_AFFINE;

typedef P256_POINT_AFFINE PRECOMP256_ROW[64];

/* Functions implemented in assembly */

/* Modular mul by 2: res = 2*a mod P */
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Modular div by 2: res = a/2 mod P */
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Modular mul by 3: res = 3*a mod P */
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Modular add: res = a+b mod P */
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS],
                      const BN_ULONG b[P256_LIMBS]);
/* Modular sub: res = a-b mod P */
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS],
                      const BN_ULONG b[P256_LIMBS]);
/* Modular neg: res = -a mod P */
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
/* Montgomery mul: res = a*b*2^-256 mod P */
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS],
                           const BN_ULONG b[P256_LIMBS]);
/* Montgomery sqr: res = a*a*2^-256 mod P */
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Convert a number from Montgomery domain, by multiplying with 1 */
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
                            const BN_ULONG in[P256_LIMBS]);
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
                          const BN_ULONG in[P256_LIMBS]);
/* Functions that perform constant time access to the precomputed tables */
void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT *in_t, int index);
void ecp_nistz256_select_w7(P256_POINT_AFFINE *val,
                            const P256_POINT_AFFINE *in_t, int index);

/* One converted into the Montgomery domain */
static const BN_ULONG ONE[P256_LIMBS] = {
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
};

/* Precomputed tables for the default generator */
#include "p256-x86_64-table.h"

/* Recode window to a signed digit, see ecp_nistputil.c for details */
static unsigned booth_recode_w5(unsigned in) {
  unsigned s, d;

  s = ~((in >> 5) - 1);
  d = (1 << 6) - in - 1;
  d = (d & s) | (in & ~s);
  d = (d >> 1) + (d & 1);

  return (d << 1) + (s & 1);
}

static unsigned booth_recode_w7(unsigned in) {
  unsigned s, d;

  s = ~((in >> 7) - 1);
  d = (1 << 8) - in - 1;
  d = (d & s) | (in & ~s);
  d = (d >> 1) + (d & 1);

  return (d << 1) + (s & 1);
}

static void copy_conditional(BN_ULONG dst[P256_LIMBS],
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
  BN_ULONG mask1 = ((BN_ULONG)0) - move;
  BN_ULONG mask2 = ~mask1;

  dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
  dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
  dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
  dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
  if (P256_LIMBS == 8) {
    dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
    dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
    dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
    dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
  }
}

static BN_ULONG is_zero(BN_ULONG in) {
  in |= (0 - in);
  in = ~in;
  in &= BN_MASK2;
  in >>= BN_BITS2 - 1;
  return in;
}

static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
                         const BN_ULONG b[P256_LIMBS]) {
  BN_ULONG res;

  res = a[0] ^ b[0];
  res |= a[1] ^ b[1];
  res |= a[2] ^ b[2];
  res |= a[3] ^ b[3];
  if (P256_LIMBS == 8) {
    res |= a[4] ^ b[4];
    res |= a[5] ^ b[5];
    res |= a[6] ^ b[6];
    res |= a[7] ^ b[7];
  }

  return is_zero(res);
}

static BN_ULONG is_one(const BN_ULONG a[P256_LIMBS]) {
  BN_ULONG res;

  res = a[0] ^ ONE[0];
  res |= a[1] ^ ONE[1];
  res |= a[2] ^ ONE[2];
  res |= a[3] ^ ONE[3];
  if (P256_LIMBS == 8) {
    res |= a[4] ^ ONE[4];
    res |= a[5] ^ ONE[5];
    res |= a[6] ^ ONE[6];
  }

  return is_zero(res);
}

void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a,
                            const P256_POINT *b);
void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a,
                                   const P256_POINT_AFFINE *b);

/* r = in^-1 mod p */
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
                                     const BN_ULONG in[P256_LIMBS]) {
  /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
     ffffffff
     We use FLT and used poly-2 as exponent */
  BN_ULONG p2[P256_LIMBS];
  BN_ULONG p4[P256_LIMBS];
  BN_ULONG p8[P256_LIMBS];
  BN_ULONG p16[P256_LIMBS];
  BN_ULONG p32[P256_LIMBS];
  BN_ULONG res[P256_LIMBS];
  int i;

  ecp_nistz256_sqr_mont(res, in);
  ecp_nistz256_mul_mont(p2, res, in); /* 3*p */

  ecp_nistz256_sqr_mont(res, p2);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(p4, res, p2); /* f*p */

  ecp_nistz256_sqr_mont(res, p4);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */

  ecp_nistz256_sqr_mont(res, p8);
  for (i = 0; i < 7; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */

  ecp_nistz256_sqr_mont(res, p16);
  for (i = 0; i < 15; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */

  ecp_nistz256_sqr_mont(res, p32);
  for (i = 0; i < 31; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, in);

  for (i = 0; i < 32 * 4; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p32);

  for (i = 0; i < 32; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p32);

  for (i = 0; i < 16; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p16);

  for (i = 0; i < 8; i++) {
    ecp_nistz256_sqr_mont(res, res);
  }
  ecp_nistz256_mul_mont(res, res, p8);

  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(res, res, p4);

  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(res, res, p2);

  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_sqr_mont(res, res);
  ecp_nistz256_mul_mont(res, res, in);

  memcpy(r, res, sizeof(res));
}

/* ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
 * returns one if it fits. Otherwise it returns zero. */
static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
                                             const BIGNUM *in) {
  if (in->top > P256_LIMBS) {
    return 0;
  }

  memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS);
  memcpy(out, in->d, sizeof(BN_ULONG) * in->top);
  return 1;
}

/* r = sum(scalar[i]*point[i]) */
static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
                                      const BIGNUM **scalar,
                                      const EC_POINT **point, int num,
                                      BN_CTX *ctx) {
  static const unsigned kWindowSize = 5;
  static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;

  void *table_storage = OPENSSL_malloc(num * 16 * sizeof(P256_POINT) + 64);
  uint8_t(*p_str)[33] = OPENSSL_malloc(num * 33 * sizeof(uint8_t));
  const BIGNUM **scalars = OPENSSL_malloc(num * sizeof(BIGNUM *));

  if (table_storage == NULL ||
      p_str == NULL ||
      scalars == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    goto err;
  }

  P256_POINT(*table)[16] = (void *)ALIGNPTR(table_storage, 64);

  int i;
  for (i = 0; i < num; i++) {
    P256_POINT *row = table[i];

    if (BN_num_bits(scalar[i]) > 256 || BN_is_negative(scalar[i])) {
      BIGNUM *mod = BN_CTX_get(ctx);
      if (mod == NULL) {
        goto err;
      }

      if (!BN_nnmod(mod, scalar[i], &group->order, ctx)) {
        OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
        goto err;
      }
      scalars[i] = mod;
    } else {
      scalars[i] = scalar[i];
    }

    int j;
    for (j = 0; j < scalars[i]->top * BN_BYTES; j += BN_BYTES) {
      BN_ULONG d = scalars[i]->d[j / BN_BYTES];

      p_str[i][j + 0] = d & 0xff;
      p_str[i][j + 1] = (d >> 8) & 0xff;
      p_str[i][j + 2] = (d >> 16) & 0xff;
      p_str[i][j + 3] = (d >>= 24) & 0xff;
      if (BN_BYTES == 8) {
        d >>= 8;
        p_str[i][j + 4] = d & 0xff;
        p_str[i][j + 5] = (d >> 8) & 0xff;
        p_str[i][j + 6] = (d >> 16) & 0xff;
        p_str[i][j + 7] = (d >> 24) & 0xff;
      }
    }

    for (; j < 33; j++) {
      p_str[i][j] = 0;
    }

    /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
     * not stored. All other values are actually stored with an offset of -1 in
     * table. */

    if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &point[i]->X) ||
        !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &point[i]->Y) ||
        !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &point[i]->Z)) {
      OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
      goto err;
    }

    ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
    ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
    ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
    ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
    ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
    ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
    ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
    ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
    ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
    ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
    ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
    ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
    ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
    ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
    ecp_nistz256_point_add(&row[16 - 1], &row[15 - 1], &row[1 - 1]);
  }

  BN_ULONG tmp[P256_LIMBS];
  ALIGN32 P256_POINT h;
  unsigned index = 255;
  unsigned wvalue = p_str[0][(index - 1) / 8];
  wvalue = (wvalue >> ((index - 1) % 8)) & kMask;

  ecp_nistz256_select_w5(r, table[0], booth_recode_w5(wvalue) >> 1);

  while (index >= 5) {
    for (i = (index == 255 ? 1 : 0); i < num; i++) {
      unsigned off = (index - 1) / 8;

      wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
      wvalue = (wvalue >> ((index - 1) % 8)) & kMask;

      wvalue = booth_recode_w5(wvalue);

      ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);

      ecp_nistz256_neg(tmp, h.Y);
      copy_conditional(h.Y, tmp, (wvalue & 1));

      ecp_nistz256_point_add(r, r, &h);
    }

    index -= kWindowSize;

    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
    ecp_nistz256_point_double(r, r);
  }

  /* Final window */
  for (i = 0; i < num; i++) {
    wvalue = p_str[i][0];
    wvalue = (wvalue << 1) & kMask;

    wvalue = booth_recode_w5(wvalue);

    ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);

    ecp_nistz256_neg(tmp, h.Y);
    copy_conditional(h.Y, tmp, wvalue & 1);

    ecp_nistz256_point_add(r, r, &h);
  }

err:
  OPENSSL_free(table_storage);
  OPENSSL_free(p_str);
  OPENSSL_free((BIGNUM**) scalars);
}

/* Coordinates of G, for which we have precomputed tables */
const static BN_ULONG def_xG[P256_LIMBS] = {
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6),
};

const static BN_ULONG def_yG[P256_LIMBS] = {
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
};

/* ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
 * generator. */
static int ecp_nistz256_is_affine_G(const EC_POINT *generator) {
  return (generator->X.top == P256_LIMBS) && (generator->Y.top == P256_LIMBS) &&
         (generator->Z.top == (P256_LIMBS - P256_LIMBS / 8)) &&
         is_equal(generator->X.d, def_xG) && is_equal(generator->Y.d, def_yG) &&
         is_one(generator->Z.d);
}

/* r = scalar*G + sum(scalars[i]*points[i]) */
static int ecp_nistz256_points_mul(
    const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num,
    const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) {
  static const unsigned kWindowSize = 7;
  static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;

  int ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
  ALIGN32 union {
    P256_POINT p;
    P256_POINT_AFFINE a;
  } t, p;

  if (scalar == NULL && num == 0) {
    return EC_POINT_set_to_infinity(group, r);
  }

  /* Need 256 bits for space for all coordinates. */
  bn_wexpand(&r->X, P256_LIMBS);
  bn_wexpand(&r->Y, P256_LIMBS);
  bn_wexpand(&r->Z, P256_LIMBS);
  r->X.top = P256_LIMBS;
  r->Y.top = P256_LIMBS;
  r->Z.top = P256_LIMBS;

  const EC_POINT *generator = NULL;
  if (scalar) {
    generator = EC_GROUP_get0_generator(group);
    if (generator == NULL) {
      OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
      goto err;
    }

    if (ecp_nistz256_is_affine_G(generator)) {
      if (BN_num_bits(scalar) > 256 || BN_is_negative(scalar)) {
        BIGNUM *tmp_scalar = BN_CTX_get(ctx);
        if (tmp_scalar == NULL) {
          goto err;
        }

        if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) {
          OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
          goto err;
        }
        scalar = tmp_scalar;
      }

      uint8_t p_str[33] = {0};
      int i;
      for (i = 0; i < scalar->top * BN_BYTES; i += BN_BYTES) {
        BN_ULONG d = scalar->d[i / BN_BYTES];

        p_str[i + 0] = d & 0xff;
        p_str[i + 1] = (d >> 8) & 0xff;
        p_str[i + 2] = (d >> 16) & 0xff;
        p_str[i + 3] = (d >>= 24) & 0xff;
        if (BN_BYTES == 8) {
          d >>= 8;
          p_str[i + 4] = d & 0xff;
          p_str[i + 5] = (d >> 8) & 0xff;
          p_str[i + 6] = (d >> 16) & 0xff;
          p_str[i + 7] = (d >> 24) & 0xff;
        }
      }

      for (; i < (int) sizeof(p_str); i++) {
        p_str[i] = 0;
      }

      /* First window */
      unsigned wvalue = (p_str[0] << 1) & kMask;
      unsigned index = kWindowSize;

      wvalue = booth_recode_w7(wvalue);

      const PRECOMP256_ROW *const precomputed_table =
          (const PRECOMP256_ROW *)ecp_nistz256_precomputed;
      ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);

      ecp_nistz256_neg(p.p.Z, p.p.Y);
      copy_conditional(p.p.Y, p.p.Z, wvalue & 1);

      memcpy(p.p.Z, ONE, sizeof(ONE));

      for (i = 1; i < 37; i++) {
        unsigned off = (index - 1) / 8;
        wvalue = p_str[off] | p_str[off + 1] << 8;
        wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
        index += kWindowSize;

        wvalue = booth_recode_w7(wvalue);

        ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);

        ecp_nistz256_neg(t.p.Z, t.a.Y);
        copy_conditional(t.a.Y, t.p.Z, wvalue & 1);

        ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
      }
    } else {
      p_is_infinity = 1;
      no_precomp_for_generator = 1;
    }
  } else {
    p_is_infinity = 1;
  }

  if (no_precomp_for_generator) {
    /* Without a precomputed table for the generator, it has to be handled like
     * a normal point. */
    const BIGNUM **new_scalars;
    const EC_POINT **new_points;

    /* Bound |num| so that all the possible overflows in the following can be
     * excluded. */
    if (0xffffff < num) {
      OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
      return 0;
    }

    new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
    if (new_scalars == NULL) {
      OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
      return 0;
    }

    new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
    if (new_points == NULL) {
      OPENSSL_free((BIGNUM**) new_scalars);
      OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
      return 0;
    }

    memcpy((BIGNUM**) new_scalars, scalars, num * sizeof(BIGNUM *));
    new_scalars[num] = scalar;
    memcpy((EC_POINT**) new_points, points, num * sizeof(EC_POINT *));
    new_points[num] = generator;

    scalars = new_scalars;
    points = new_points;
    num++;
  }

  if (num) {
    P256_POINT *out = &t.p;
    if (p_is_infinity) {
      out = &p.p;
    }

    ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx);

    if (!p_is_infinity) {
      ecp_nistz256_point_add(&p.p, &p.p, out);
    }
  }

  if (no_precomp_for_generator) {
    OPENSSL_free((BIGNUM **) scalars);
    OPENSSL_free((EC_POINT **) points);
  }

  memcpy(r->X.d, p.p.X, sizeof(p.p.X));
  memcpy(r->Y.d, p.p.Y, sizeof(p.p.Y));
  memcpy(r->Z.d, p.p.Z, sizeof(p.p.Z));
  bn_correct_top(&r->X);
  bn_correct_top(&r->Y);
  bn_correct_top(&r->Z);

  ret = 1;

err:
  return ret;
}

static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
                                   BIGNUM *x, BIGNUM *y, BN_CTX *ctx) {
  BN_ULONG z_inv2[P256_LIMBS];
  BN_ULONG z_inv3[P256_LIMBS];
  BN_ULONG x_aff[P256_LIMBS];
  BN_ULONG y_aff[P256_LIMBS];
  BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];

  if (EC_POINT_is_at_infinity(group, point)) {
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    return 0;
  }

  if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
      !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
      !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
    OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
    return 0;
  }

  ecp_nistz256_mod_inverse(z_inv3, point_z);
  ecp_nistz256_sqr_mont(z_inv2, z_inv3);
  ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);

  if (x != NULL) {
    bn_wexpand(x, P256_LIMBS);
    x->top = P256_LIMBS;
    ecp_nistz256_from_mont(x->d, x_aff);
    bn_correct_top(x);
  }

  if (y != NULL) {
    ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
    ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
    bn_wexpand(y, P256_LIMBS);
    y->top = P256_LIMBS;
    ecp_nistz256_from_mont(y->d, y_aff);
    bn_correct_top(y);
  }

  return 1;
}

const EC_METHOD *EC_GFp_nistz256_method(void) {
  static const EC_METHOD ret = {
      ec_GFp_mont_group_init,
      ec_GFp_mont_group_finish,
      ec_GFp_mont_group_clear_finish,
      ec_GFp_mont_group_copy,
      ec_GFp_mont_group_set_curve,
      ecp_nistz256_get_affine,
      ecp_nistz256_points_mul,
      0, /* precompute_mult */
      ec_GFp_mont_field_mul,
      ec_GFp_mont_field_sqr,
      ec_GFp_mont_field_encode,
      ec_GFp_mont_field_decode,
      ec_GFp_mont_field_set_to_one,
  };

  return &ret;
}

#endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
          !defined(OPENSSL_SMALL) */