// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop.h" #if defined(OS_POSIX) && !defined(OS_MACOSX) #include #include #endif #include #include "base/compiler_specific.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/message_pump_default.h" #include "base/metrics/histogram.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/threading/thread_local.h" #if defined(OS_MACOSX) #include "base/message_pump_mac.h" #endif #if defined(OS_POSIX) #include "base/message_pump_libevent.h" #endif #if defined(OS_POSIX) && !defined(OS_MACOSX) #include "base/message_pump_glib.h" #endif #if defined(TOUCH_UI) #include "base/message_pump_glib_x.h" #endif using base::TimeDelta; using base::TimeTicks; namespace { // A lazily created thread local storage for quick access to a thread's message // loop, if one exists. This should be safe and free of static constructors. base::LazyInstance > lazy_tls_ptr( base::LINKER_INITIALIZED); // Logical events for Histogram profiling. Run with -message-loop-histogrammer // to get an accounting of messages and actions taken on each thread. const int kTaskRunEvent = 0x1; const int kTimerEvent = 0x2; // Provide range of message IDs for use in histogramming and debug display. const int kLeastNonZeroMessageId = 1; const int kMaxMessageId = 1099; const int kNumberOfDistinctMessagesDisplayed = 1100; // Provide a macro that takes an expression (such as a constant, or macro // constant) and creates a pair to initalize an array of pairs. In this case, // our pair consists of the expressions value, and the "stringized" version // of the expression (i.e., the exrpression put in quotes). For example, if // we have: // #define FOO 2 // #define BAR 5 // then the following: // VALUE_TO_NUMBER_AND_NAME(FOO + BAR) // will expand to: // {7, "FOO + BAR"} // We use the resulting array as an argument to our histogram, which reads the // number as a bucket identifier, and proceeds to use the corresponding name // in the pair (i.e., the quoted string) when printing out a histogram. #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name}, const base::LinearHistogram::DescriptionPair event_descriptions_[] = { // Provide some pretty print capability in our histogram for our internal // messages. // A few events we handle (kindred to messages), and used to profile actions. VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent) VALUE_TO_NUMBER_AND_NAME(kTimerEvent) {-1, NULL} // The list must be null terminated, per API to histogram. }; bool enable_histogrammer_ = false; } // namespace //------------------------------------------------------------------------------ #if defined(OS_WIN) // Upon a SEH exception in this thread, it restores the original unhandled // exception filter. static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) { ::SetUnhandledExceptionFilter(old_filter); return EXCEPTION_CONTINUE_SEARCH; } // Retrieves a pointer to the current unhandled exception filter. There // is no standalone getter method. static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() { LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL; top_filter = ::SetUnhandledExceptionFilter(0); ::SetUnhandledExceptionFilter(top_filter); return top_filter; } #endif // defined(OS_WIN) //------------------------------------------------------------------------------ MessageLoop::TaskObserver::TaskObserver() { } MessageLoop::TaskObserver::~TaskObserver() { } MessageLoop::DestructionObserver::~DestructionObserver() { } //------------------------------------------------------------------------------ MessageLoop::MessageLoop(Type type) : type_(type), nestable_tasks_allowed_(true), exception_restoration_(false), state_(NULL), next_sequence_num_(0) { DCHECK(!current()) << "should only have one message loop per thread"; lazy_tls_ptr.Pointer()->Set(this); // TODO(rvargas): Get rid of the OS guards. #if defined(OS_WIN) #define MESSAGE_PUMP_UI new base::MessagePumpForUI() #define MESSAGE_PUMP_IO new base::MessagePumpForIO() #elif defined(OS_MACOSX) #define MESSAGE_PUMP_UI base::MessagePumpMac::Create() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #elif defined(ANDROID) #define MESSAGE_PUMP_UI new base::MessagePumpDefault() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #elif defined(TOUCH_UI) #define MESSAGE_PUMP_UI new base::MessagePumpGlibX() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #elif defined(OS_NACL) // Currently NaCl doesn't have a UI or an IO MessageLoop. // TODO(abarth): Figure out if we need these. #define MESSAGE_PUMP_UI NULL #define MESSAGE_PUMP_IO NULL #elif defined(OS_POSIX) // POSIX but not MACOSX. #define MESSAGE_PUMP_UI new base::MessagePumpForUI() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #else #error Not implemented #endif if (type_ == TYPE_UI) { pump_ = MESSAGE_PUMP_UI; } else if (type_ == TYPE_IO) { pump_ = MESSAGE_PUMP_IO; } else { DCHECK_EQ(TYPE_DEFAULT, type_); pump_ = new base::MessagePumpDefault(); } } MessageLoop::~MessageLoop() { DCHECK_EQ(this, current()); DCHECK(!state_); // Clean up any unprocessed tasks, but take care: deleting a task could // result in the addition of more tasks (e.g., via DeleteSoon). We set a // limit on the number of times we will allow a deleted task to generate more // tasks. Normally, we should only pass through this loop once or twice. If // we end up hitting the loop limit, then it is probably due to one task that // is being stubborn. Inspect the queues to see who is left. bool did_work; for (int i = 0; i < 100; ++i) { DeletePendingTasks(); ReloadWorkQueue(); // If we end up with empty queues, then break out of the loop. did_work = DeletePendingTasks(); if (!did_work) break; } DCHECK(!did_work); // Let interested parties have one last shot at accessing this. FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_, WillDestroyCurrentMessageLoop()); // OK, now make it so that no one can find us. lazy_tls_ptr.Pointer()->Set(NULL); } // static MessageLoop* MessageLoop::current() { // TODO(darin): sadly, we cannot enable this yet since people call us even // when they have no intention of using us. // DCHECK(loop) << "Ouch, did you forget to initialize me?"; return lazy_tls_ptr.Pointer()->Get(); } // static void MessageLoop::EnableHistogrammer(bool enable) { enable_histogrammer_ = enable; } void MessageLoop::AddDestructionObserver( DestructionObserver* destruction_observer) { DCHECK_EQ(this, current()); destruction_observers_.AddObserver(destruction_observer); } void MessageLoop::RemoveDestructionObserver( DestructionObserver* destruction_observer) { DCHECK_EQ(this, current()); destruction_observers_.RemoveObserver(destruction_observer); } void MessageLoop::PostTask( const tracked_objects::Location& from_here, Task* task) { PostTask_Helper(from_here, task, 0, true); } void MessageLoop::PostDelayedTask( const tracked_objects::Location& from_here, Task* task, int64 delay_ms) { PostTask_Helper(from_here, task, delay_ms, true); } void MessageLoop::PostNonNestableTask( const tracked_objects::Location& from_here, Task* task) { PostTask_Helper(from_here, task, 0, false); } void MessageLoop::PostNonNestableDelayedTask( const tracked_objects::Location& from_here, Task* task, int64 delay_ms) { PostTask_Helper(from_here, task, delay_ms, false); } void MessageLoop::Run() { AutoRunState save_state(this); RunHandler(); } void MessageLoop::RunAllPending() { AutoRunState save_state(this); state_->quit_received = true; // Means run until we would otherwise block. RunHandler(); } void MessageLoop::Quit() { DCHECK_EQ(this, current()); if (state_) { state_->quit_received = true; } else { NOTREACHED() << "Must be inside Run to call Quit"; } } void MessageLoop::QuitNow() { DCHECK_EQ(this, current()); if (state_) { pump_->Quit(); } else { NOTREACHED() << "Must be inside Run to call Quit"; } } void MessageLoop::SetNestableTasksAllowed(bool allowed) { if (nestable_tasks_allowed_ != allowed) { nestable_tasks_allowed_ = allowed; if (!nestable_tasks_allowed_) return; // Start the native pump if we are not already pumping. pump_->ScheduleWork(); } } bool MessageLoop::NestableTasksAllowed() const { return nestable_tasks_allowed_; } bool MessageLoop::IsNested() { return state_->run_depth > 1; } void MessageLoop::AddTaskObserver(TaskObserver* task_observer) { DCHECK_EQ(this, current()); task_observers_.AddObserver(task_observer); } void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) { DCHECK_EQ(this, current()); task_observers_.RemoveObserver(task_observer); } void MessageLoop::AssertIdle() const { // We only check |incoming_queue_|, since we don't want to lock |work_queue_|. base::AutoLock lock(incoming_queue_lock_); DCHECK(incoming_queue_.empty()); } //------------------------------------------------------------------------------ // Runs the loop in two different SEH modes: // enable_SEH_restoration_ = false : any unhandled exception goes to the last // one that calls SetUnhandledExceptionFilter(). // enable_SEH_restoration_ = true : any unhandled exception goes to the filter // that was existed before the loop was run. void MessageLoop::RunHandler() { #if defined(OS_WIN) if (exception_restoration_) { RunInternalInSEHFrame(); return; } #endif RunInternal(); } #if defined(OS_WIN) __declspec(noinline) void MessageLoop::RunInternalInSEHFrame() { LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter(); __try { RunInternal(); } __except(SEHFilter(current_filter)) { } return; } #endif void MessageLoop::RunInternal() { DCHECK_EQ(this, current()); #ifndef ANDROID StartHistogrammer(); #endif #if !defined(OS_MACOSX) if (state_->dispatcher && type() == TYPE_UI) { static_cast(pump_.get())-> RunWithDispatcher(this, state_->dispatcher); return; } #endif pump_->Run(this); } bool MessageLoop::ProcessNextDelayedNonNestableTask() { if (state_->run_depth != 1) return false; if (deferred_non_nestable_work_queue_.empty()) return false; Task* task = deferred_non_nestable_work_queue_.front().task; deferred_non_nestable_work_queue_.pop(); RunTask(task); return true; } void MessageLoop::RunTask(Task* task) { DCHECK(nestable_tasks_allowed_); // Execute the task and assume the worst: It is probably not reentrant. nestable_tasks_allowed_ = false; HistogramEvent(kTaskRunEvent); FOR_EACH_OBSERVER(TaskObserver, task_observers_, WillProcessTask(task)); task->Run(); FOR_EACH_OBSERVER(TaskObserver, task_observers_, DidProcessTask(task)); delete task; nestable_tasks_allowed_ = true; } bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) { if (pending_task.nestable || state_->run_depth == 1) { RunTask(pending_task.task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; } // We couldn't run the task now because we're in a nested message loop // and the task isn't nestable. deferred_non_nestable_work_queue_.push(pending_task); return false; } void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) { // Move to the delayed work queue. Initialize the sequence number // before inserting into the delayed_work_queue_. The sequence number // is used to faciliate FIFO sorting when two tasks have the same // delayed_run_time value. PendingTask new_pending_task(pending_task); new_pending_task.sequence_num = next_sequence_num_++; delayed_work_queue_.push(new_pending_task); } void MessageLoop::ReloadWorkQueue() { // We can improve performance of our loading tasks from incoming_queue_ to // work_queue_ by waiting until the last minute (work_queue_ is empty) to // load. That reduces the number of locks-per-task significantly when our // queues get large. if (!work_queue_.empty()) return; // Wait till we *really* need to lock and load. // Acquire all we can from the inter-thread queue with one lock acquisition. { base::AutoLock lock(incoming_queue_lock_); if (incoming_queue_.empty()) return; incoming_queue_.Swap(&work_queue_); // Constant time DCHECK(incoming_queue_.empty()); } } bool MessageLoop::DeletePendingTasks() { bool did_work = !work_queue_.empty(); while (!work_queue_.empty()) { PendingTask pending_task = work_queue_.front(); work_queue_.pop(); if (!pending_task.delayed_run_time.is_null()) { // We want to delete delayed tasks in the same order in which they would // normally be deleted in case of any funny dependencies between delayed // tasks. AddToDelayedWorkQueue(pending_task); } else { // TODO(darin): Delete all tasks once it is safe to do so. // Until it is totally safe, just do it when running Purify or // Valgrind. #if defined(PURIFY) || defined(USE_HEAPCHECKER) delete pending_task.task; #else if (RunningOnValgrind()) delete pending_task.task; #endif // defined(OS_POSIX) } } did_work |= !deferred_non_nestable_work_queue_.empty(); while (!deferred_non_nestable_work_queue_.empty()) { // TODO(darin): Delete all tasks once it is safe to do so. // Until it is totaly safe, only delete them under Purify and Valgrind. Task* task = NULL; #if defined(PURIFY) || defined(USE_HEAPCHECKER) task = deferred_non_nestable_work_queue_.front().task; #else if (RunningOnValgrind()) task = deferred_non_nestable_work_queue_.front().task; #endif deferred_non_nestable_work_queue_.pop(); if (task) delete task; } did_work |= !delayed_work_queue_.empty(); while (!delayed_work_queue_.empty()) { Task* task = delayed_work_queue_.top().task; delayed_work_queue_.pop(); delete task; } return did_work; } // Possibly called on a background thread! void MessageLoop::PostTask_Helper( const tracked_objects::Location& from_here, Task* task, int64 delay_ms, bool nestable) { task->SetBirthPlace(from_here); PendingTask pending_task(task, nestable); if (delay_ms > 0) { pending_task.delayed_run_time = TimeTicks::Now() + TimeDelta::FromMilliseconds(delay_ms); #if defined(OS_WIN) if (high_resolution_timer_expiration_.is_null()) { // Windows timers are granular to 15.6ms. If we only set high-res // timers for those under 15.6ms, then a 18ms timer ticks at ~32ms, // which as a percentage is pretty inaccurate. So enable high // res timers for any timer which is within 2x of the granularity. // This is a tradeoff between accuracy and power management. bool needs_high_res_timers = delay_ms < (2 * base::Time::kMinLowResolutionThresholdMs); if (needs_high_res_timers) { base::Time::ActivateHighResolutionTimer(true); high_resolution_timer_expiration_ = TimeTicks::Now() + TimeDelta::FromMilliseconds(kHighResolutionTimerModeLeaseTimeMs); } } #endif } else { DCHECK_EQ(delay_ms, 0) << "delay should not be negative"; } #if defined(OS_WIN) if (!high_resolution_timer_expiration_.is_null()) { if (TimeTicks::Now() > high_resolution_timer_expiration_) { base::Time::ActivateHighResolutionTimer(false); high_resolution_timer_expiration_ = TimeTicks(); } } #endif // Warning: Don't try to short-circuit, and handle this thread's tasks more // directly, as it could starve handling of foreign threads. Put every task // into this queue. scoped_refptr pump; { base::AutoLock locked(incoming_queue_lock_); bool was_empty = incoming_queue_.empty(); incoming_queue_.push(pending_task); if (!was_empty) return; // Someone else should have started the sub-pump. pump = pump_; } // Since the incoming_queue_ may contain a task that destroys this message // loop, we cannot exit incoming_queue_lock_ until we are done with |this|. // We use a stack-based reference to the message pump so that we can call // ScheduleWork outside of incoming_queue_lock_. pump->ScheduleWork(); } //------------------------------------------------------------------------------ // Method and data for histogramming events and actions taken by each instance // on each thread. void MessageLoop::StartHistogrammer() { if (enable_histogrammer_ && !message_histogram_.get() && base::StatisticsRecorder::IsActive()) { DCHECK(!thread_name_.empty()); message_histogram_ = base::LinearHistogram::FactoryGet( "MsgLoop:" + thread_name_, kLeastNonZeroMessageId, kMaxMessageId, kNumberOfDistinctMessagesDisplayed, message_histogram_->kHexRangePrintingFlag); message_histogram_->SetRangeDescriptions(event_descriptions_); } } void MessageLoop::HistogramEvent(int event) { if (message_histogram_.get()) message_histogram_->Add(event); } bool MessageLoop::DoWork() { if (!nestable_tasks_allowed_) { // Task can't be executed right now. return false; } for (;;) { ReloadWorkQueue(); if (work_queue_.empty()) break; // Execute oldest task. do { PendingTask pending_task = work_queue_.front(); work_queue_.pop(); if (!pending_task.delayed_run_time.is_null()) { AddToDelayedWorkQueue(pending_task); // If we changed the topmost task, then it is time to re-schedule. if (delayed_work_queue_.top().task == pending_task.task) pump_->ScheduleDelayedWork(pending_task.delayed_run_time); } else { if (DeferOrRunPendingTask(pending_task)) return true; } } while (!work_queue_.empty()); } // Nothing happened. return false; } bool MessageLoop::DoDelayedWork(base::TimeTicks* next_delayed_work_time) { if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) { recent_time_ = *next_delayed_work_time = TimeTicks(); return false; } // When we "fall behind," there will be a lot of tasks in the delayed work // queue that are ready to run. To increase efficiency when we fall behind, // we will only call Time::Now() intermittently, and then process all tasks // that are ready to run before calling it again. As a result, the more we // fall behind (and have a lot of ready-to-run delayed tasks), the more // efficient we'll be at handling the tasks. TimeTicks next_run_time = delayed_work_queue_.top().delayed_run_time; if (next_run_time > recent_time_) { recent_time_ = TimeTicks::Now(); // Get a better view of Now(); if (next_run_time > recent_time_) { *next_delayed_work_time = next_run_time; return false; } } PendingTask pending_task = delayed_work_queue_.top(); delayed_work_queue_.pop(); if (!delayed_work_queue_.empty()) *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time; return DeferOrRunPendingTask(pending_task); } bool MessageLoop::DoIdleWork() { if (ProcessNextDelayedNonNestableTask()) return true; if (state_->quit_received) pump_->Quit(); return false; } //------------------------------------------------------------------------------ // MessageLoop::AutoRunState MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) { // Make the loop reference us. previous_state_ = loop_->state_; if (previous_state_) { run_depth = previous_state_->run_depth + 1; } else { run_depth = 1; } loop_->state_ = this; // Initialize the other fields: quit_received = false; #if !defined(OS_MACOSX) dispatcher = NULL; #endif } MessageLoop::AutoRunState::~AutoRunState() { loop_->state_ = previous_state_; } //------------------------------------------------------------------------------ // MessageLoop::PendingTask bool MessageLoop::PendingTask::operator<(const PendingTask& other) const { // Since the top of a priority queue is defined as the "greatest" element, we // need to invert the comparison here. We want the smaller time to be at the // top of the heap. if (delayed_run_time < other.delayed_run_time) return false; if (delayed_run_time > other.delayed_run_time) return true; // If the times happen to match, then we use the sequence number to decide. // Compare the difference to support integer roll-over. return (sequence_num - other.sequence_num) > 0; } //------------------------------------------------------------------------------ // MessageLoopForUI #if defined(OS_WIN) void MessageLoopForUI::DidProcessMessage(const MSG& message) { pump_win()->DidProcessMessage(message); } #endif // defined(OS_WIN) #if defined(USE_X11) Display* MessageLoopForUI::GetDisplay() { return gdk_x11_get_default_xdisplay(); } #endif // defined(USE_X11) #if !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(ANDROID) void MessageLoopForUI::AddObserver(Observer* observer) { pump_ui()->AddObserver(observer); } void MessageLoopForUI::RemoveObserver(Observer* observer) { pump_ui()->RemoveObserver(observer); } void MessageLoopForUI::Run(Dispatcher* dispatcher) { AutoRunState save_state(this); state_->dispatcher = dispatcher; RunHandler(); } #endif // !defined(OS_MACOSX) && !defined(OS_NACL) //------------------------------------------------------------------------------ // MessageLoopForIO #if defined(OS_WIN) void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) { pump_io()->RegisterIOHandler(file, handler); } bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { return pump_io()->WaitForIOCompletion(timeout, filter); } #elif defined(OS_POSIX) && !defined(OS_NACL) bool MessageLoopForIO::WatchFileDescriptor(int fd, bool persistent, Mode mode, FileDescriptorWatcher *controller, Watcher *delegate) { return pump_libevent()->WatchFileDescriptor( fd, persistent, static_cast(mode), controller, delegate); } #endif