// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file defines utility functions for working with strings. #ifndef BASE_STRING_UTIL_H_ #define BASE_STRING_UTIL_H_ #pragma once #include // va_list #include #include #include "base/basictypes.h" #include "base/compiler_specific.h" #include "base/string16.h" #include "base/string_piece.h" // For implicit conversions. // TODO(brettw) remove this dependency. Previously StringPrintf lived in this // file. We need to convert the callers over to using stringprintf.h instead // and then remove this. #include "base/stringprintf.h" // Safe standard library wrappers for all platforms. namespace base { // C standard-library functions like "strncasecmp" and "snprintf" that aren't // cross-platform are provided as "base::strncasecmp", and their prototypes // are listed below. These functions are then implemented as inline calls // to the platform-specific equivalents in the platform-specific headers. // Compares the two strings s1 and s2 without regard to case using // the current locale; returns 0 if they are equal, 1 if s1 > s2, and -1 if // s2 > s1 according to a lexicographic comparison. int strcasecmp(const char* s1, const char* s2); // Compares up to count characters of s1 and s2 without regard to case using // the current locale; returns 0 if they are equal, 1 if s1 > s2, and -1 if // s2 > s1 according to a lexicographic comparison. int strncasecmp(const char* s1, const char* s2, size_t count); // Same as strncmp but for char16 strings. int strncmp16(const char16* s1, const char16* s2, size_t count); // Wrapper for vsnprintf that always null-terminates and always returns the // number of characters that would be in an untruncated formatted // string, even when truncation occurs. int vsnprintf(char* buffer, size_t size, const char* format, va_list arguments) PRINTF_FORMAT(3, 0); // vswprintf always null-terminates, but when truncation occurs, it will either // return -1 or the number of characters that would be in an untruncated // formatted string. The actual return value depends on the underlying // C library's vswprintf implementation. int vswprintf(wchar_t* buffer, size_t size, const wchar_t* format, va_list arguments) WPRINTF_FORMAT(3, 0); // Some of these implementations need to be inlined. // We separate the declaration from the implementation of this inline // function just so the PRINTF_FORMAT works. inline int snprintf(char* buffer, size_t size, const char* format, ...) PRINTF_FORMAT(3, 4); inline int snprintf(char* buffer, size_t size, const char* format, ...) { va_list arguments; va_start(arguments, format); int result = vsnprintf(buffer, size, format, arguments); va_end(arguments); return result; } // We separate the declaration from the implementation of this inline // function just so the WPRINTF_FORMAT works. inline int swprintf(wchar_t* buffer, size_t size, const wchar_t* format, ...) WPRINTF_FORMAT(3, 4); inline int swprintf(wchar_t* buffer, size_t size, const wchar_t* format, ...) { va_list arguments; va_start(arguments, format); int result = vswprintf(buffer, size, format, arguments); va_end(arguments); return result; } // BSD-style safe and consistent string copy functions. // Copies |src| to |dst|, where |dst_size| is the total allocated size of |dst|. // Copies at most |dst_size|-1 characters, and always NULL terminates |dst|, as // long as |dst_size| is not 0. Returns the length of |src| in characters. // If the return value is >= dst_size, then the output was truncated. // NOTE: All sizes are in number of characters, NOT in bytes. size_t strlcpy(char* dst, const char* src, size_t dst_size); size_t wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size); // Scan a wprintf format string to determine whether it's portable across a // variety of systems. This function only checks that the conversion // specifiers used by the format string are supported and have the same meaning // on a variety of systems. It doesn't check for other errors that might occur // within a format string. // // Nonportable conversion specifiers for wprintf are: // - 's' and 'c' without an 'l' length modifier. %s and %c operate on char // data on all systems except Windows, which treat them as wchar_t data. // Use %ls and %lc for wchar_t data instead. // - 'S' and 'C', which operate on wchar_t data on all systems except Windows, // which treat them as char data. Use %ls and %lc for wchar_t data // instead. // - 'F', which is not identified by Windows wprintf documentation. // - 'D', 'O', and 'U', which are deprecated and not available on all systems. // Use %ld, %lo, and %lu instead. // // Note that there is no portable conversion specifier for char data when // working with wprintf. // // This function is intended to be called from base::vswprintf. bool IsWprintfFormatPortable(const wchar_t* format); // ASCII-specific tolower. The standard library's tolower is locale sensitive, // so we don't want to use it here. template inline Char ToLowerASCII(Char c) { return (c >= 'A' && c <= 'Z') ? (c + ('a' - 'A')) : c; } // ASCII-specific toupper. The standard library's toupper is locale sensitive, // so we don't want to use it here. template inline Char ToUpperASCII(Char c) { return (c >= 'a' && c <= 'z') ? (c + ('A' - 'a')) : c; } // Function objects to aid in comparing/searching strings. template struct CaseInsensitiveCompare { public: bool operator()(Char x, Char y) const { // TODO(darin): Do we really want to do locale sensitive comparisons here? // See http://crbug.com/24917 return tolower(x) == tolower(y); } }; template struct CaseInsensitiveCompareASCII { public: bool operator()(Char x, Char y) const { return ToLowerASCII(x) == ToLowerASCII(y); } }; } // namespace base #if defined(OS_WIN) #include "base/string_util_win.h" #elif defined(OS_POSIX) #include "base/string_util_posix.h" #else #error Define string operations appropriately for your platform #endif // These threadsafe functions return references to globally unique empty // strings. // // DO NOT USE THESE AS A GENERAL-PURPOSE SUBSTITUTE FOR DEFAULT CONSTRUCTORS. // There is only one case where you should use these: functions which need to // return a string by reference (e.g. as a class member accessor), and don't // have an empty string to use (e.g. in an error case). These should not be // used as initializers, function arguments, or return values for functions // which return by value or outparam. const std::string& EmptyString(); const std::wstring& EmptyWString(); const string16& EmptyString16(); extern const wchar_t kWhitespaceWide[]; extern const char16 kWhitespaceUTF16[]; extern const char kWhitespaceASCII[]; extern const char kUtf8ByteOrderMark[]; // Removes characters in remove_chars from anywhere in input. Returns true if // any characters were removed. // NOTE: Safe to use the same variable for both input and output. bool RemoveChars(const std::wstring& input, const wchar_t remove_chars[], std::wstring* output); bool RemoveChars(const string16& input, const char16 remove_chars[], string16* output); bool RemoveChars(const std::string& input, const char remove_chars[], std::string* output); // Removes characters in trim_chars from the beginning and end of input. // NOTE: Safe to use the same variable for both input and output. bool TrimString(const std::wstring& input, const wchar_t trim_chars[], std::wstring* output); bool TrimString(const string16& input, const char16 trim_chars[], string16* output); bool TrimString(const std::string& input, const char trim_chars[], std::string* output); // Truncates a string to the nearest UTF-8 character that will leave // the string less than or equal to the specified byte size. void TruncateUTF8ToByteSize(const std::string& input, const size_t byte_size, std::string* output); // Trims any whitespace from either end of the input string. Returns where // whitespace was found. // The non-wide version has two functions: // * TrimWhitespaceASCII() // This function is for ASCII strings and only looks for ASCII whitespace; // Please choose the best one according to your usage. // NOTE: Safe to use the same variable for both input and output. enum TrimPositions { TRIM_NONE = 0, TRIM_LEADING = 1 << 0, TRIM_TRAILING = 1 << 1, TRIM_ALL = TRIM_LEADING | TRIM_TRAILING, }; TrimPositions TrimWhitespace(const std::wstring& input, TrimPositions positions, std::wstring* output); TrimPositions TrimWhitespace(const string16& input, TrimPositions positions, string16* output); TrimPositions TrimWhitespaceASCII(const std::string& input, TrimPositions positions, std::string* output); // Deprecated. This function is only for backward compatibility and calls // TrimWhitespaceASCII(). TrimPositions TrimWhitespace(const std::string& input, TrimPositions positions, std::string* output); // Searches for CR or LF characters. Removes all contiguous whitespace // strings that contain them. This is useful when trying to deal with text // copied from terminals. // Returns |text|, with the following three transformations: // (1) Leading and trailing whitespace is trimmed. // (2) If |trim_sequences_with_line_breaks| is true, any other whitespace // sequences containing a CR or LF are trimmed. // (3) All other whitespace sequences are converted to single spaces. std::wstring CollapseWhitespace(const std::wstring& text, bool trim_sequences_with_line_breaks); string16 CollapseWhitespace(const string16& text, bool trim_sequences_with_line_breaks); std::string CollapseWhitespaceASCII(const std::string& text, bool trim_sequences_with_line_breaks); // Returns true if the passed string is empty or contains only white-space // characters. bool ContainsOnlyWhitespaceASCII(const std::string& str); bool ContainsOnlyWhitespace(const string16& str); // Returns true if |input| is empty or contains only characters found in // |characters|. bool ContainsOnlyChars(const std::wstring& input, const std::wstring& characters); bool ContainsOnlyChars(const string16& input, const string16& characters); bool ContainsOnlyChars(const std::string& input, const std::string& characters); // Converts to 7-bit ASCII by truncating. The result must be known to be ASCII // beforehand. std::string WideToASCII(const std::wstring& wide); std::string UTF16ToASCII(const string16& utf16); // Converts the given wide string to the corresponding Latin1. This will fail // (return false) if any characters are more than 255. bool WideToLatin1(const std::wstring& wide, std::string* latin1); // Returns true if the specified string matches the criteria. How can a wide // string be 8-bit or UTF8? It contains only characters that are < 256 (in the // first case) or characters that use only 8-bits and whose 8-bit // representation looks like a UTF-8 string (the second case). // // Note that IsStringUTF8 checks not only if the input is structrually // valid but also if it doesn't contain any non-character codepoint // (e.g. U+FFFE). It's done on purpose because all the existing callers want // to have the maximum 'discriminating' power from other encodings. If // there's a use case for just checking the structural validity, we have to // add a new function for that. bool IsStringUTF8(const std::string& str); bool IsStringASCII(const std::wstring& str); bool IsStringASCII(const base::StringPiece& str); bool IsStringASCII(const string16& str); // Converts the elements of the given string. This version uses a pointer to // clearly differentiate it from the non-pointer variant. template inline void StringToLowerASCII(str* s) { for (typename str::iterator i = s->begin(); i != s->end(); ++i) *i = base::ToLowerASCII(*i); } template inline str StringToLowerASCII(const str& s) { // for std::string and std::wstring str output(s); StringToLowerASCII(&output); return output; } // Converts the elements of the given string. This version uses a pointer to // clearly differentiate it from the non-pointer variant. template inline void StringToUpperASCII(str* s) { for (typename str::iterator i = s->begin(); i != s->end(); ++i) *i = base::ToUpperASCII(*i); } template inline str StringToUpperASCII(const str& s) { // for std::string and std::wstring str output(s); StringToUpperASCII(&output); return output; } // Compare the lower-case form of the given string against the given ASCII // string. This is useful for doing checking if an input string matches some // token, and it is optimized to avoid intermediate string copies. This API is // borrowed from the equivalent APIs in Mozilla. bool LowerCaseEqualsASCII(const std::string& a, const char* b); bool LowerCaseEqualsASCII(const std::wstring& a, const char* b); bool LowerCaseEqualsASCII(const string16& a, const char* b); // Same thing, but with string iterators instead. bool LowerCaseEqualsASCII(std::string::const_iterator a_begin, std::string::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(std::wstring::const_iterator a_begin, std::wstring::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(string16::const_iterator a_begin, string16::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(const char* a_begin, const char* a_end, const char* b); bool LowerCaseEqualsASCII(const wchar_t* a_begin, const wchar_t* a_end, const char* b); bool LowerCaseEqualsASCII(const char16* a_begin, const char16* a_end, const char* b); // Performs a case-sensitive string compare. The behavior is undefined if both // strings are not ASCII. bool EqualsASCII(const string16& a, const base::StringPiece& b); // Returns true if str starts with search, or false otherwise. bool StartsWithASCII(const std::string& str, const std::string& search, bool case_sensitive); bool StartsWith(const std::wstring& str, const std::wstring& search, bool case_sensitive); bool StartsWith(const string16& str, const string16& search, bool case_sensitive); // Returns true if str ends with search, or false otherwise. bool EndsWith(const std::string& str, const std::string& search, bool case_sensitive); bool EndsWith(const std::wstring& str, const std::wstring& search, bool case_sensitive); bool EndsWith(const string16& str, const string16& search, bool case_sensitive); // Determines the type of ASCII character, independent of locale (the C // library versions will change based on locale). template inline bool IsAsciiWhitespace(Char c) { return c == ' ' || c == '\r' || c == '\n' || c == '\t'; } template inline bool IsAsciiAlpha(Char c) { return ((c >= 'A') && (c <= 'Z')) || ((c >= 'a') && (c <= 'z')); } template inline bool IsAsciiDigit(Char c) { return c >= '0' && c <= '9'; } template inline bool IsHexDigit(Char c) { return (c >= '0' && c <= '9') || (c >= 'A' && c <= 'F') || (c >= 'a' && c <= 'f'); } template inline Char HexDigitToInt(Char c) { DCHECK(IsHexDigit(c)); if (c >= '0' && c <= '9') return c - '0'; if (c >= 'A' && c <= 'F') return c - 'A' + 10; if (c >= 'a' && c <= 'f') return c - 'a' + 10; return 0; } // Returns true if it's a whitespace character. inline bool IsWhitespace(wchar_t c) { return wcschr(kWhitespaceWide, c) != NULL; } enum DataUnits { DATA_UNITS_BYTE = 0, DATA_UNITS_KIBIBYTE, DATA_UNITS_MEBIBYTE, DATA_UNITS_GIBIBYTE, }; // Return the unit type that is appropriate for displaying the amount of bytes // passed in. DataUnits GetByteDisplayUnits(int64 bytes); // Return a byte string in human-readable format, displayed in units appropriate // specified by 'units', with an optional unit suffix. // Ex: FormatBytes(512, DATA_UNITS_KIBIBYTE, true) => "0.5 KB" // Ex: FormatBytes(10*1024, DATA_UNITS_MEBIBYTE, false) => "0.1" string16 FormatBytes(int64 bytes, DataUnits units, bool show_units); // As above, but with "/s" units. // Ex: FormatSpeed(512, DATA_UNITS_KIBIBYTE, true) => "0.5 KB/s" // Ex: FormatSpeed(10*1024, DATA_UNITS_MEBIBYTE, false) => "0.1" string16 FormatSpeed(int64 bytes, DataUnits units, bool show_units); // Return a number formated with separators in the user's locale way. // Ex: FormatNumber(1234567) => 1,234,567 string16 FormatNumber(int64 number); // Starting at |start_offset| (usually 0), replace the first instance of // |find_this| with |replace_with|. void ReplaceFirstSubstringAfterOffset(string16* str, string16::size_type start_offset, const string16& find_this, const string16& replace_with); void ReplaceFirstSubstringAfterOffset(std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with); // Starting at |start_offset| (usually 0), look through |str| and replace all // instances of |find_this| with |replace_with|. // // This does entire substrings; use std::replace in for single // characters, for example: // std::replace(str.begin(), str.end(), 'a', 'b'); void ReplaceSubstringsAfterOffset(string16* str, string16::size_type start_offset, const string16& find_this, const string16& replace_with); void ReplaceSubstringsAfterOffset(std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with); // This is mpcomplete's pattern for saving a string copy when dealing with // a function that writes results into a wchar_t[] and wanting the result to // end up in a std::wstring. It ensures that the std::wstring's internal // buffer has enough room to store the characters to be written into it, and // sets its .length() attribute to the right value. // // The reserve() call allocates the memory required to hold the string // plus a terminating null. This is done because resize() isn't // guaranteed to reserve space for the null. The resize() call is // simply the only way to change the string's 'length' member. // // XXX-performance: the call to wide.resize() takes linear time, since it fills // the string's buffer with nulls. I call it to change the length of the // string (needed because writing directly to the buffer doesn't do this). // Perhaps there's a constant-time way to change the string's length. template inline typename string_type::value_type* WriteInto(string_type* str, size_t length_with_null) { str->reserve(length_with_null); str->resize(length_with_null - 1); return &((*str)[0]); } //----------------------------------------------------------------------------- // Splits a string into its fields delimited by any of the characters in // |delimiters|. Each field is added to the |tokens| vector. Returns the // number of tokens found. size_t Tokenize(const std::wstring& str, const std::wstring& delimiters, std::vector* tokens); size_t Tokenize(const string16& str, const string16& delimiters, std::vector* tokens); size_t Tokenize(const std::string& str, const std::string& delimiters, std::vector* tokens); size_t Tokenize(const base::StringPiece& str, const base::StringPiece& delimiters, std::vector* tokens); // Does the opposite of SplitString(). string16 JoinString(const std::vector& parts, char16 s); std::string JoinString(const std::vector& parts, char s); // Replace $1-$2-$3..$9 in the format string with |a|-|b|-|c|..|i| respectively. // Additionally, any number of consecutive '$' characters is replaced by that // number less one. Eg $$->$, $$$->$$, etc. The offsets parameter here can be // NULL. This only allows you to use up to nine replacements. string16 ReplaceStringPlaceholders(const string16& format_string, const std::vector& subst, std::vector* offsets); std::string ReplaceStringPlaceholders(const base::StringPiece& format_string, const std::vector& subst, std::vector* offsets); // Single-string shortcut for ReplaceStringHolders. |offset| may be NULL. string16 ReplaceStringPlaceholders(const string16& format_string, const string16& a, size_t* offset); // Returns true if the string passed in matches the pattern. The pattern // string can contain wildcards like * and ? // The backslash character (\) is an escape character for * and ? // We limit the patterns to having a max of 16 * or ? characters. // ? matches 0 or 1 character, while * matches 0 or more characters. bool MatchPattern(const base::StringPiece& string, const base::StringPiece& pattern); bool MatchPattern(const string16& string, const string16& pattern); // Hack to convert any char-like type to its unsigned counterpart. // For example, it will convert char, signed char and unsigned char to unsigned // char. template struct ToUnsigned { typedef T Unsigned; }; template<> struct ToUnsigned { typedef unsigned char Unsigned; }; template<> struct ToUnsigned { typedef unsigned char Unsigned; }; template<> struct ToUnsigned { #if defined(WCHAR_T_IS_UTF16) typedef unsigned short Unsigned; #elif defined(WCHAR_T_IS_UTF32) typedef uint32 Unsigned; #endif }; template<> struct ToUnsigned { typedef unsigned short Unsigned; }; #endif // BASE_STRING_UTIL_H_