summaryrefslogtreecommitdiffstats
path: root/gnulib-local/lib/fstrcmp.c
blob: bfcd7a4fd18ff50ecb123cb8966b2fbb81386bbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/* Functions to make fuzzy comparisons between strings
   Copyright (C) 1988-1989, 1992-1993, 1995, 2001-2003, 2006 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or (at
   your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


   Derived from GNU diff 2.7, analyze.c et al.

   The basic idea is to consider two strings as similar if, when
   transforming the first string into the second string through a
   sequence of edits (inserts and deletes of one character each),
   this sequence is short - or equivalently, if the ordered list
   of characters that are untouched by these edits is long.  For a
   good introduction to the subject, read about the "Levenshtein
   distance" in Wikipedia.

   The basic algorithm is described in:
   "An O(ND) Difference Algorithm and its Variations", Eugene Myers,
   Algorithmica Vol. 1 No. 2, 1986, pp. 251-266;
   see especially section 4.2, which describes the variation used below.

   The basic algorithm was independently discovered as described in:
   "Algorithms for Approximate String Matching", E. Ukkonen,
   Information and Control Vol. 64, 1985, pp. 100-118.

   Unless the 'minimal' flag is set, this code uses the TOO_EXPENSIVE
   heuristic, by Paul Eggert, to limit the cost to O(N**1.5 log N)
   at the price of producing suboptimal output for large inputs with
   many differences.

   Modified to work on strings rather than files
   by Peter Miller <pmiller@agso.gov.au>, October 1995 */

#include <config.h>

/* Specification.  */
#include "fstrcmp.h"

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#include "lock.h"
#include "tls.h"
#include "xalloc.h"

#ifndef uintptr_t
# define uintptr_t unsigned long
#endif


/*
 * Context of comparison operation.
 */
struct context
{
  /*
   * Data on one input string being compared.
   */
  struct string_data
  {
    /* The string to be compared. */
    const char *data;

    /* The length of the string to be compared. */
    int data_length;

    /* The number of characters inserted or deleted. */
    int edit_count;
  }
  string[2];

  #ifdef MINUS_H_FLAG

  /* This corresponds to the diff -H flag.  With this heuristic, for
     strings with a constant small density of changes, the algorithm is
     linear in the strings size.  This is unlikely in typical uses of
     fstrcmp, and so is usually compiled out.  Besides, there is no
     interface to set it true.  */
  int heuristic;

  #endif

  /* Vector, indexed by diagonal, containing 1 + the X coordinate of the
     point furthest along the given diagonal in the forward search of the
     edit matrix.  */
  int *fdiag;

  /* Vector, indexed by diagonal, containing the X coordinate of the point
     furthest along the given diagonal in the backward search of the edit
     matrix.  */
  int *bdiag;

  /* Edit scripts longer than this are too expensive to compute.  */
  int too_expensive;

  /* Snakes bigger than this are considered `big'.  */
  #define SNAKE_LIMIT	20
};

struct partition
{
  /* Midpoints of this partition.  */
  int xmid, ymid;

  /* Nonzero if low half will be analyzed minimally.  */
  int lo_minimal;

  /* Likewise for high half.  */
  int hi_minimal;
};


/* NAME
	diag - find diagonal path

   SYNOPSIS
	int diag(int xoff, int xlim, int yoff, int ylim, int minimal,
		 struct partition *part, struct context *ctxt);

   DESCRIPTION
	Find the midpoint of the shortest edit script for a specified
	portion of the two strings.

	Scan from the beginnings of the strings, and simultaneously from
	the ends, doing a breadth-first search through the space of
	edit-sequence.  When the two searches meet, we have found the
	midpoint of the shortest edit sequence.

	If MINIMAL is nonzero, find the minimal edit script regardless
	of expense.  Otherwise, if the search is too expensive, use
	heuristics to stop the search and report a suboptimal answer.

   RETURNS
	Set PART->(XMID,YMID) to the midpoint (XMID,YMID).  The diagonal
	number XMID - YMID equals the number of inserted characters
	minus the number of deleted characters (counting only characters
	before the midpoint).  Return the approximate edit cost; this is
	the total number of characters inserted or deleted (counting
	only characters before the midpoint), unless a heuristic is used
	to terminate the search prematurely.

	Set PART->LEFT_MINIMAL to nonzero iff the minimal edit script
	for the left half of the partition is known; similarly for
	PART->RIGHT_MINIMAL.

   CAVEAT
	This function assumes that the first characters of the specified
	portions of the two strings do not match, and likewise that the
	last characters do not match.  The caller must trim matching
	characters from the beginning and end of the portions it is
	going to specify.

	If we return the "wrong" partitions, the worst this can do is
	cause suboptimal diff output.  It cannot cause incorrect diff
	output.  */

static int
diag (int xoff, int xlim, int yoff, int ylim, int minimal,
      struct partition *part, struct context *ctxt)
{
  int *const fd = ctxt->fdiag;	/* Give the compiler a chance. */
  int *const bd = ctxt->bdiag;	/* Additional help for the compiler. */
  const char *const xv = ctxt->string[0].data;	/* Still more help for the compiler. */
  const char *const yv = ctxt->string[1].data;	/* And more and more . . . */
  const int dmin = xoff - ylim;	/* Minimum valid diagonal. */
  const int dmax = xlim - yoff;	/* Maximum valid diagonal. */
  const int fmid = xoff - yoff;	/* Center diagonal of top-down search. */
  const int bmid = xlim - ylim;	/* Center diagonal of bottom-up search. */
  int fmin = fmid;
  int fmax = fmid;		/* Limits of top-down search. */
  int bmin = bmid;
  int bmax = bmid;		/* Limits of bottom-up search. */
  int c;			/* Cost. */
  int odd = (fmid - bmid) & 1;

  /*
   * True if southeast corner is on an odd diagonal with respect
   * to the northwest.
   */
  fd[fmid] = xoff;
  bd[bmid] = xlim;
  for (c = 1;; ++c)
    {
      int d;			/* Active diagonal. */
      int big_snake;

      big_snake = 0;
      /* Extend the top-down search by an edit step in each diagonal. */
      if (fmin > dmin)
	fd[--fmin - 1] = -1;
      else
	++fmin;
      if (fmax < dmax)
	fd[++fmax + 1] = -1;
      else
	--fmax;
      for (d = fmax; d >= fmin; d -= 2)
	{
	  int x;
	  int y;
	  int oldx;
	  int tlo;
	  int thi;

	  tlo = fd[d - 1],
	    thi = fd[d + 1];

	  if (tlo >= thi)
	    x = tlo + 1;
	  else
	    x = thi;
	  oldx = x;
	  y = x - d;
	  while (x < xlim && y < ylim && xv[x] == yv[y])
	    {
	      ++x;
	      ++y;
	    }
	  if (x - oldx > SNAKE_LIMIT)
	    big_snake = 1;
	  fd[d] = x;
	  if (odd && bmin <= d && d <= bmax && bd[d] <= x)
	    {
	      part->xmid = x;
	      part->ymid = y;
	      part->lo_minimal = part->hi_minimal = 1;
	      return 2 * c - 1;
	    }
	}
      /* Similarly extend the bottom-up search.  */
      if (bmin > dmin)
	bd[--bmin - 1] = INT_MAX;
      else
	++bmin;
      if (bmax < dmax)
	bd[++bmax + 1] = INT_MAX;
      else
	--bmax;
      for (d = bmax; d >= bmin; d -= 2)
	{
	  int x;
	  int y;
	  int oldx;
	  int tlo;
	  int thi;

	  tlo = bd[d - 1],
	    thi = bd[d + 1];
	  if (tlo < thi)
	    x = tlo;
	  else
	    x = thi - 1;
	  oldx = x;
	  y = x - d;
	  while (x > xoff && y > yoff && xv[x - 1] == yv[y - 1])
	    {
	      --x;
	      --y;
	    }
	  if (oldx - x > SNAKE_LIMIT)
	    big_snake = 1;
	  bd[d] = x;
	  if (!odd && fmin <= d && d <= fmax && x <= fd[d])
	    {
	      part->xmid = x;
	      part->ymid = y;
	      part->lo_minimal = part->hi_minimal = 1;
	      return 2 * c;
	    }
	}

      if (minimal)
	continue;

#ifdef MINUS_H_FLAG
      /* Heuristic: check occasionally for a diagonal that has made lots
         of progress compared with the edit distance.  If we have any
         such, find the one that has made the most progress and return
         it as if it had succeeded.

         With this heuristic, for strings with a constant small density
         of changes, the algorithm is linear in the strings size.  */
      if (c > 200 && big_snake && ctxt->heuristic)
	{
	  int best;

	  best = 0;
	  for (d = fmax; d >= fmin; d -= 2)
	    {
	      int dd;
	      int x;
	      int y;
	      int v;

	      dd = d - fmid;
	      x = fd[d];
	      y = x - d;
	      v = (x - xoff) * 2 - dd;

	      if (v > 12 * (c + (dd < 0 ? -dd : dd)))
		{
		  if
		    (
		      v > best
		      &&
		      xoff + SNAKE_LIMIT <= x
		      &&
		      x < xlim
		      &&
		      yoff + SNAKE_LIMIT <= y
		      &&
		      y < ylim
		    )
		    {
		      /* We have a good enough best diagonal; now insist
			 that it end with a significant snake.  */
		      int k;

		      for (k = 1; xv[x - k] == yv[y - k]; k++)
			{
			  if (k == SNAKE_LIMIT)
			    {
			      best = v;
			      part->xmid = x;
			      part->ymid = y;
			      break;
			    }
			}
		    }
		}
	    }
	  if (best > 0)
	    {
	      part->lo_minimal = 1;
	      part->hi_minimal = 0;
	      return 2 * c - 1;
	    }
	  best = 0;
	  for (d = bmax; d >= bmin; d -= 2)
	    {
	      int dd;
	      int x;
	      int y;
	      int v;

	      dd = d - bmid;
	      x = bd[d];
	      y = x - d;
	      v = (xlim - x) * 2 + dd;

	      if (v > 12 * (c + (dd < 0 ? -dd : dd)))
		{
		  if (v > best && xoff < x && x <= xlim - SNAKE_LIMIT &&
		      yoff < y && y <= ylim - SNAKE_LIMIT)
		    {
		      /* We have a good enough best diagonal; now insist
			 that it end with a significant snake.  */
		      int k;

		      for (k = 0; xv[x + k] == yv[y + k]; k++)
			{
			  if (k == SNAKE_LIMIT - 1)
			    {
			      best = v;
			      part->xmid = x;
			      part->ymid = y;
			      break;
			    }
			}
		    }
		}
	    }
	  if (best > 0)
	    {
	      part->lo_minimal = 0;
	      part->hi_minimal = 1;
	      return 2 * c - 1;
	    }
	}
#endif /* MINUS_H_FLAG */

      /* Heuristic: if we've gone well beyond the call of duty, give up
	 and report halfway between our best results so far.  */
      if (c >= ctxt->too_expensive)
	{
	  int fxybest;
	  int fxbest;
	  int bxybest;
	  int bxbest;

	  /* Pacify `gcc -Wall'. */
	  fxbest = 0;
	  bxbest = 0;

	  /* Find forward diagonal that maximizes X + Y.  */
	  fxybest = -1;
	  for (d = fmax; d >= fmin; d -= 2)
	    {
	      int x;
	      int y;

	      x = fd[d] < xlim ? fd[d] : xlim;
	      y = x - d;

	      if (ylim < y)
		{
		  x = ylim + d;
		  y = ylim;
		}
	      if (fxybest < x + y)
		{
		  fxybest = x + y;
		  fxbest = x;
		}
	    }
	  /* Find backward diagonal that minimizes X + Y.  */
	  bxybest = INT_MAX;
	  for (d = bmax; d >= bmin; d -= 2)
	    {
	      int x;
	      int y;

	      x = xoff > bd[d] ? xoff : bd[d];
	      y = x - d;

	      if (y < yoff)
		{
		  x = yoff + d;
		  y = yoff;
		}
	      if (x + y < bxybest)
		{
		  bxybest = x + y;
		  bxbest = x;
		}
	    }
	  /* Use the better of the two diagonals.  */
	  if ((xlim + ylim) - bxybest < fxybest - (xoff + yoff))
	    {
	      part->xmid = fxbest;
	      part->ymid = fxybest - fxbest;
	      part->lo_minimal = 1;
	      part->hi_minimal = 0;
	    }
	  else
	    {
	      part->xmid = bxbest;
	      part->ymid = bxybest - bxbest;
	      part->lo_minimal = 0;
	      part->hi_minimal = 1;
	    }
	  return 2 * c - 1;
	}
    }
}


/* NAME
	compareseq - find edit sequence

   SYNOPSIS
	void compareseq(int xoff, int xlim, int yoff, int ylim, int minimal,
			struct context *ctxt);

   DESCRIPTION
	Compare in detail contiguous subsequences of the two strings
	which are known, as a whole, to match each other.

	The subsequence of string 0 is [XOFF, XLIM) and likewise for
	string 1.

	Note that XLIM, YLIM are exclusive bounds.  All character
	numbers are origin-0.

	If MINIMAL is nonzero, find a minimal difference no matter how
	expensive it is.  */

static void
compareseq (int xoff, int xlim, int yoff, int ylim, int minimal,
	    struct context *ctxt)
{
  const char *const xv = ctxt->string[0].data;	/* Help the compiler.  */
  const char *const yv = ctxt->string[1].data;

  /* Slide down the bottom initial diagonal. */
  while (xoff < xlim && yoff < ylim && xv[xoff] == yv[yoff])
    {
      ++xoff;
      ++yoff;
    }

  /* Slide up the top initial diagonal. */
  while (xlim > xoff && ylim > yoff && xv[xlim - 1] == yv[ylim - 1])
    {
      --xlim;
      --ylim;
    }

  /* Handle simple cases. */
  if (xoff == xlim)
    {
      while (yoff < ylim)
	{
	  ctxt->string[1].edit_count++;
	  ++yoff;
	}
    }
  else if (yoff == ylim)
    {
      while (xoff < xlim)
	{
	  ctxt->string[0].edit_count++;
	  ++xoff;
	}
    }
  else
    {
      int c;
      struct partition part;

      /* Find a point of correspondence in the middle of the strings.  */
      c = diag (xoff, xlim, yoff, ylim, minimal, &part, ctxt);
      if (c == 1)
	{
#if 0
	  /* This should be impossible, because it implies that one of
	     the two subsequences is empty, and that case was handled
	     above without calling `diag'.  Let's verify that this is
	     true.  */
	  abort ();
#else
	  /* The two subsequences differ by a single insert or delete;
	     record it and we are done.  */
	  if (part.xmid - part.ymid < xoff - yoff)
	    ctxt->string[1].edit_count++;
	  else
	    ctxt->string[0].edit_count++;
#endif
	}
      else
	{
	  /* Use the partitions to split this problem into subproblems.  */
	  compareseq (xoff, part.xmid, yoff, part.ymid, part.lo_minimal, ctxt);
	  compareseq (part.xmid, xlim, part.ymid, ylim, part.hi_minimal, ctxt);
	}
    }
}


/* Because fstrcmp is typically called multiple times, attempt to minimize
   the number of memory allocations performed.  Thus, let a call reuse the
   memory already allocated by the previous call, if it is sufficient.
   To make it multithread-safe, without need for a lock that protects the
   already allocated memory, store the allocated memory per thread.  Free
   it only when the thread exits.  */

static gl_tls_key_t buffer_key;	/* TLS key for a 'int *' */
static gl_tls_key_t bufmax_key;	/* TLS key for a 'size_t' */

static void
keys_init (void)
{
  gl_tls_key_init (buffer_key, free);
  gl_tls_key_init (bufmax_key, NULL);
  /* The per-thread initial values are NULL and 0, respectively.  */
}

/* Ensure that keys_init is called once only.  */
gl_once_define(static, keys_init_once)


/* NAME
	fstrcmp - fuzzy string compare

   SYNOPSIS
	double fstrcmp(const char *, const char *);

   DESCRIPTION
	The fstrcmp function may be used to compare two string for
	similarity.  It is very useful in reducing "cascade" or
	"secondary" errors in compilers or other situations where
	symbol tables occur.

   RETURNS
	double; 0 if the strings are entirly dissimilar, 1 if the
	strings are identical, and a number in between if they are
	similar.  */

double
fstrcmp (const char *string1, const char *string2)
{
  struct context ctxt;
  int i;

  size_t fdiag_len;
  int *buffer;
  size_t bufmax;

  /* set the info for each string.  */
  ctxt.string[0].data = string1;
  ctxt.string[0].data_length = strlen (string1);
  ctxt.string[1].data = string2;
  ctxt.string[1].data_length = strlen (string2);

  /* short-circuit obvious comparisons */
  if (ctxt.string[0].data_length == 0 && ctxt.string[1].data_length == 0)
    return 1.0;
  if (ctxt.string[0].data_length == 0 || ctxt.string[1].data_length == 0)
    return 0.0;

  /* Set TOO_EXPENSIVE to be approximate square root of input size,
     bounded below by 256.  */
  ctxt.too_expensive = 1;
  for (i = ctxt.string[0].data_length + ctxt.string[1].data_length;
       i != 0;
       i >>= 2)
    ctxt.too_expensive <<= 1;
  if (ctxt.too_expensive < 256)
    ctxt.too_expensive = 256;

  /* Allocate memory for fdiag and bdiag from a thread-local pool.  */
  fdiag_len = ctxt.string[0].data_length + ctxt.string[1].data_length + 3;
  gl_once (keys_init_once, keys_init);
  buffer = (int *) gl_tls_get (buffer_key);
  bufmax = (size_t) (uintptr_t) gl_tls_get (bufmax_key);
  if (fdiag_len > bufmax)
    {
      /* Need more memory.  */
      bufmax = 2 * bufmax;
      if (fdiag_len > bufmax)
	bufmax = fdiag_len;
      /* Calling xrealloc would be a waste: buffer's contents does not need
	 to be preserved.  */
      if (buffer != NULL)
	free (buffer);
      buffer = (int *) xmalloc (bufmax * (2 * sizeof (int)));
      gl_tls_set (buffer_key, buffer);
      gl_tls_set (bufmax_key, (void *) (uintptr_t) bufmax);
    }
  ctxt.fdiag = buffer + ctxt.string[1].data_length + 1;
  ctxt.bdiag = ctxt.fdiag + fdiag_len;

  /* Now do the main comparison algorithm */
  ctxt.string[0].edit_count = 0;
  ctxt.string[1].edit_count = 0;
  compareseq (0, ctxt.string[0].data_length, 0, ctxt.string[1].data_length, 0,
	      &ctxt);

  /* The result is
	((number of chars in common) / (average length of the strings)).
     This is admittedly biased towards finding that the strings are
     similar, however it does produce meaningful results.  */
  return ((double) (ctxt.string[0].data_length + ctxt.string[1].data_length
		    - ctxt.string[1].edit_count - ctxt.string[0].edit_count)
	  / (ctxt.string[0].data_length + ctxt.string[1].data_length));
}