diff options
author | Owen Anderson <resistor@mac.com> | 2009-07-22 00:24:57 +0000 |
---|---|---|
committer | Owen Anderson <resistor@mac.com> | 2009-07-22 00:24:57 +0000 |
commit | e922c0201916e0b980ab3cfe91e1413e68d55647 (patch) | |
tree | 663be741b84470d97945f01da459a3627af683fd /lib/Analysis | |
parent | 7cf12c7efd37dc12c3ed536a3f4c373dddac2b85 (diff) | |
download | external_llvm-e922c0201916e0b980ab3cfe91e1413e68d55647.zip external_llvm-e922c0201916e0b980ab3cfe91e1413e68d55647.tar.gz external_llvm-e922c0201916e0b980ab3cfe91e1413e68d55647.tar.bz2 |
Get rid of the Pass+Context magic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76702 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis')
-rw-r--r-- | lib/Analysis/BasicAliasAnalysis.cpp | 32 | ||||
-rw-r--r-- | lib/Analysis/ConstantFolding.cpp | 142 | ||||
-rw-r--r-- | lib/Analysis/IPA/Andersens.cpp | 2 | ||||
-rw-r--r-- | lib/Analysis/LoopVR.cpp | 6 | ||||
-rw-r--r-- | lib/Analysis/ScalarEvolution.cpp | 63 | ||||
-rw-r--r-- | lib/Analysis/ScalarEvolutionExpander.cpp | 20 | ||||
-rw-r--r-- | lib/Analysis/ValueTracking.cpp | 12 |
7 files changed, 140 insertions, 137 deletions
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp index 308c69a..49d771a 100644 --- a/lib/Analysis/BasicAliasAnalysis.cpp +++ b/lib/Analysis/BasicAliasAnalysis.cpp @@ -309,7 +309,7 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) { AliasAnalysis::AliasResult BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { - Context = &V1->getType()->getContext(); + LLVMContext &Context = V1->getType()->getContext(); // Strip off any constant expression casts if they exist if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1)) @@ -395,13 +395,13 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, // the base pointers. while (isGEP(GEP1->getOperand(0)) && GEP1->getOperand(1) == - Context->getNullValue(GEP1->getOperand(1)->getType())) + Context.getNullValue(GEP1->getOperand(1)->getType())) GEP1 = cast<User>(GEP1->getOperand(0)); const Value *BasePtr1 = GEP1->getOperand(0); while (isGEP(GEP2->getOperand(0)) && GEP2->getOperand(1) == - Context->getNullValue(GEP2->getOperand(1)->getType())) + Context.getNullValue(GEP2->getOperand(1)->getType())) GEP2 = cast<User>(GEP2->getOperand(0)); const Value *BasePtr2 = GEP2->getOperand(0); @@ -481,7 +481,7 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, for (unsigned i = 0; i != GEPOperands.size(); ++i) if (!isa<ConstantInt>(GEPOperands[i])) GEPOperands[i] = - Context->getNullValue(GEPOperands[i]->getType()); + Context.getNullValue(GEPOperands[i]->getType()); int64_t Offset = getTargetData().getIndexedOffset(BasePtr->getType(), &GEPOperands[0], @@ -499,16 +499,16 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, // This function is used to determine if the indices of two GEP instructions are // equal. V1 and V2 are the indices. -static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext *Context) { +static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) { if (V1->getType() == V2->getType()) return V1 == V2; if (Constant *C1 = dyn_cast<Constant>(V1)) if (Constant *C2 = dyn_cast<Constant>(V2)) { // Sign extend the constants to long types, if necessary if (C1->getType() != Type::Int64Ty) - C1 = Context->getConstantExprSExt(C1, Type::Int64Ty); + C1 = Context.getConstantExprSExt(C1, Type::Int64Ty); if (C2->getType() != Type::Int64Ty) - C2 = Context->getConstantExprSExt(C2, Type::Int64Ty); + C2 = Context.getConstantExprSExt(C2, Type::Int64Ty); return C1 == C2; } return false; @@ -529,7 +529,7 @@ BasicAliasAnalysis::CheckGEPInstructions( const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty); - Context = &GEPPointerTy->getContext(); + LLVMContext &Context = GEPPointerTy->getContext(); // Find the (possibly empty) initial sequence of equal values... which are not // necessarily constants. @@ -604,9 +604,9 @@ BasicAliasAnalysis::CheckGEPInstructions( if (G1OC->getType() != G2OC->getType()) { // Sign extend both operands to long. if (G1OC->getType() != Type::Int64Ty) - G1OC = Context->getConstantExprSExt(G1OC, Type::Int64Ty); + G1OC = Context.getConstantExprSExt(G1OC, Type::Int64Ty); if (G2OC->getType() != Type::Int64Ty) - G2OC = Context->getConstantExprSExt(G2OC, Type::Int64Ty); + G2OC = Context.getConstantExprSExt(G2OC, Type::Int64Ty); GEP1Ops[FirstConstantOper] = G1OC; GEP2Ops[FirstConstantOper] = G2OC; } @@ -693,7 +693,7 @@ BasicAliasAnalysis::CheckGEPInstructions( // TargetData::getIndexedOffset. for (i = 0; i != MaxOperands; ++i) if (!isa<ConstantInt>(GEP1Ops[i])) - GEP1Ops[i] = Context->getNullValue(GEP1Ops[i]->getType()); + GEP1Ops[i] = Context.getNullValue(GEP1Ops[i]->getType()); // Okay, now get the offset. This is the relative offset for the full // instruction. const TargetData &TD = getTargetData(); @@ -738,7 +738,7 @@ BasicAliasAnalysis::CheckGEPInstructions( const Type *ZeroIdxTy = GEPPointerTy; for (unsigned i = 0; i != FirstConstantOper; ++i) { if (!isa<StructType>(ZeroIdxTy)) - GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Type::Int32Ty); + GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Type::Int32Ty); if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy)) ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]); @@ -753,7 +753,7 @@ BasicAliasAnalysis::CheckGEPInstructions( // If they are equal, use a zero index... if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) { if (!isa<ConstantInt>(Op1)) - GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Op1->getType()); + GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Op1->getType()); // Otherwise, just keep the constants we have. } else { if (Op1) { @@ -780,10 +780,10 @@ BasicAliasAnalysis::CheckGEPInstructions( // if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) GEP1Ops[i] = - Context->getConstantInt(Type::Int64Ty,AT->getNumElements()-1); + Context.getConstantInt(Type::Int64Ty,AT->getNumElements()-1); else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) GEP1Ops[i] = - Context->getConstantInt(Type::Int64Ty,VT->getNumElements()-1); + Context.getConstantInt(Type::Int64Ty,VT->getNumElements()-1); } } @@ -798,7 +798,7 @@ BasicAliasAnalysis::CheckGEPInstructions( return MayAlias; // Be conservative with out-of-range accesses } } else { // Conservatively assume the minimum value for this index - GEP2Ops[i] = Context->getNullValue(Op2->getType()); + GEP2Ops[i] = Context.getNullValue(Op2->getType()); } } } diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp index 7938ca6..d60b4f6 100644 --- a/lib/Analysis/ConstantFolding.cpp +++ b/lib/Analysis/ConstantFolding.cpp @@ -95,7 +95,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, /// otherwise TD is null. static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, const TargetData *TD, - LLVMContext *Context){ + LLVMContext &Context){ // SROA // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. @@ -113,7 +113,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) && GV1 == GV2) { // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. - return Context->getConstantInt(Op0->getType(), Offs1-Offs2); + return Context.getConstantInt(Op0->getType(), Offs1-Offs2); } } @@ -124,7 +124,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, /// constant expression, do so. static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, const Type *ResultTy, - LLVMContext *Context, + LLVMContext &Context, const TargetData *TD) { Constant *Ptr = Ops[0]; if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized()) @@ -151,14 +151,14 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, uint64_t Offset = TD->getIndexedOffset(Ptr->getType(), (Value**)Ops+1, NumOps-1); - Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr); - return Context->getConstantExprIntToPtr(C, ResultTy); + Constant *C = Context.getConstantInt(TD->getIntPtrType(), Offset+BasePtr); + return Context.getConstantExprIntToPtr(C, ResultTy); } /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with /// targetdata. Return 0 if unfoldable. static Constant *FoldBitCast(Constant *C, const Type *DestTy, - const TargetData &TD, LLVMContext *Context) { + const TargetData &TD, LLVMContext &Context) { // If this is a bitcast from constant vector -> vector, fold it. if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) { if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { @@ -184,24 +184,24 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy, if (DstEltTy->isFloatingPoint()) { // Fold to an vector of integers with same size as our FP type. unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); - const Type *DestIVTy = Context->getVectorType( - Context->getIntegerType(FPWidth), NumDstElt); + const Type *DestIVTy = Context.getVectorType( + Context.getIntegerType(FPWidth), NumDstElt); // Recursively handle this integer conversion, if possible. C = FoldBitCast(C, DestIVTy, TD, Context); if (!C) return 0; // Finally, VMCore can handle this now that #elts line up. - return Context->getConstantExprBitCast(C, DestTy); + return Context.getConstantExprBitCast(C, DestTy); } // Okay, we know the destination is integer, if the input is FP, convert // it to integer first. if (SrcEltTy->isFloatingPoint()) { unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); - const Type *SrcIVTy = Context->getVectorType( - Context->getIntegerType(FPWidth), NumSrcElt); + const Type *SrcIVTy = Context.getVectorType( + Context.getIntegerType(FPWidth), NumSrcElt); // Ask VMCore to do the conversion now that #elts line up. - C = Context->getConstantExprBitCast(C, SrcIVTy); + C = Context.getConstantExprBitCast(C, SrcIVTy); CV = dyn_cast<ConstantVector>(C); if (!CV) return 0; // If VMCore wasn't able to fold it, bail out. } @@ -215,7 +215,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy, SmallVector<Constant*, 32> Result; if (NumDstElt < NumSrcElt) { // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) - Constant *Zero = Context->getNullValue(DstEltTy); + Constant *Zero = Context.getNullValue(DstEltTy); unsigned Ratio = NumSrcElt/NumDstElt; unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); unsigned SrcElt = 0; @@ -228,15 +228,15 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy, if (!Src) return 0; // Reject constantexpr elements. // Zero extend the element to the right size. - Src = Context->getConstantExprZExt(Src, Elt->getType()); + Src = Context.getConstantExprZExt(Src, Elt->getType()); // Shift it to the right place, depending on endianness. - Src = Context->getConstantExprShl(Src, - Context->getConstantInt(Src->getType(), ShiftAmt)); + Src = Context.getConstantExprShl(Src, + Context.getConstantInt(Src->getType(), ShiftAmt)); ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; // Mix it in. - Elt = Context->getConstantExprOr(Elt, Src); + Elt = Context.getConstantExprOr(Elt, Src); } Result.push_back(Elt); } @@ -254,17 +254,17 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy, for (unsigned j = 0; j != Ratio; ++j) { // Shift the piece of the value into the right place, depending on // endianness. - Constant *Elt = Context->getConstantExprLShr(Src, - Context->getConstantInt(Src->getType(), ShiftAmt)); + Constant *Elt = Context.getConstantExprLShr(Src, + Context.getConstantInt(Src->getType(), ShiftAmt)); ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; // Truncate and remember this piece. - Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy)); + Result.push_back(Context.getConstantExprTrunc(Elt, DstEltTy)); } } } - return Context->getConstantVector(Result.data(), Result.size()); + return Context.getConstantVector(Result.data(), Result.size()); } } @@ -282,11 +282,11 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy, /// is returned. Note that this function can only fail when attempting to fold /// instructions like loads and stores, which have no constant expression form. /// -Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context, +Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context, const TargetData *TD) { if (PHINode *PN = dyn_cast<PHINode>(I)) { if (PN->getNumIncomingValues() == 0) - return Context->getUndef(PN->getType()); + return Context.getUndef(PN->getType()); Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0)); if (Result == 0) return 0; @@ -322,7 +322,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context, /// using the specified TargetData. If successful, the constant result is /// result is returned, if not, null is returned. Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE, - LLVMContext *Context, + LLVMContext &Context, const TargetData *TD) { SmallVector<Constant*, 8> Ops; for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) @@ -345,7 +345,7 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE, /// Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, Constant* const* Ops, unsigned NumOps, - LLVMContext *Context, + LLVMContext &Context, const TargetData *TD) { // Handle easy binops first. if (Instruction::isBinaryOp(Opcode)) { @@ -354,7 +354,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, Context)) return C; - return Context->getConstantExpr(Opcode, Ops[0], Ops[1]); + return Context.getConstantExpr(Opcode, Ops[0], Ops[1]); } switch (Opcode) { @@ -376,15 +376,15 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, unsigned InWidth = Input->getType()->getScalarSizeInBits(); if (TD->getPointerSizeInBits() < InWidth) { Constant *Mask = - Context->getConstantInt(APInt::getLowBitsSet(InWidth, + Context.getConstantInt(APInt::getLowBitsSet(InWidth, TD->getPointerSizeInBits())); - Input = Context->getConstantExprAnd(Input, Mask); + Input = Context.getConstantExprAnd(Input, Mask); } // Do a zext or trunc to get to the dest size. - return Context->getConstantExprIntegerCast(Input, DestTy, false); + return Context.getConstantExprIntegerCast(Input, DestTy, false); } } - return Context->getConstantExprCast(Opcode, Ops[0], DestTy); + return Context.getConstantExprCast(Opcode, Ops[0], DestTy); case Instruction::IntToPtr: // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if // the int size is >= the ptr size. This requires knowing the width of a @@ -396,7 +396,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, if (CE->getOpcode() == Instruction::PtrToInt) { Constant *Input = CE->getOperand(0); Constant *C = FoldBitCast(Input, DestTy, *TD, Context); - return C ? C : Context->getConstantExprBitCast(Input, DestTy); + return C ? C : Context.getConstantExprBitCast(Input, DestTy); } // If there's a constant offset added to the integer value before // it is casted back to a pointer, see if the expression can be @@ -419,18 +419,18 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(), AT->getNumElements()))) { Constant *Index[] = { - Context->getNullValue(CE->getType()), - Context->getConstantInt(ElemIdx) + Context.getNullValue(CE->getType()), + Context.getConstantInt(ElemIdx) }; return - Context->getConstantExprGetElementPtr(GV, &Index[0], 2); + Context.getConstantExprGetElementPtr(GV, &Index[0], 2); } } } } } } - return Context->getConstantExprCast(Opcode, Ops[0], DestTy); + return Context.getConstantExprCast(Opcode, Ops[0], DestTy); case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: @@ -440,25 +440,25 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: - return Context->getConstantExprCast(Opcode, Ops[0], DestTy); + return Context.getConstantExprCast(Opcode, Ops[0], DestTy); case Instruction::BitCast: if (TD) if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context)) return C; - return Context->getConstantExprBitCast(Ops[0], DestTy); + return Context.getConstantExprBitCast(Ops[0], DestTy); case Instruction::Select: - return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]); + return Context.getConstantExprSelect(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: - return Context->getConstantExprExtractElement(Ops[0], Ops[1]); + return Context.getConstantExprExtractElement(Ops[0], Ops[1]); case Instruction::InsertElement: - return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]); + return Context.getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]); case Instruction::ShuffleVector: - return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]); + return Context.getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD)) return C; - return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1); + return Context.getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1); } } @@ -469,7 +469,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Constant*const * Ops, unsigned NumOps, - LLVMContext *Context, + LLVMContext &Context, const TargetData *TD) { // fold: icmp (inttoptr x), null -> icmp x, 0 // fold: icmp (ptrtoint x), 0 -> icmp x, null @@ -484,9 +484,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, if (CE0->getOpcode() == Instruction::IntToPtr) { // Convert the integer value to the right size to ensure we get the // proper extension or truncation. - Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0), + Constant *C = Context.getConstantExprIntegerCast(CE0->getOperand(0), IntPtrTy, false); - Constant *NewOps[] = { C, Context->getNullValue(C->getType()) }; + Constant *NewOps[] = { C, Context.getNullValue(C->getType()) }; return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, Context, TD); } @@ -496,7 +496,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, if (CE0->getOpcode() == Instruction::PtrToInt && CE0->getType() == IntPtrTy) { Constant *C = CE0->getOperand(0); - Constant *NewOps[] = { C, Context->getNullValue(C->getType()) }; + Constant *NewOps[] = { C, Context.getNullValue(C->getType()) }; // FIXME! return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, Context, TD); @@ -510,9 +510,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, if (CE0->getOpcode() == Instruction::IntToPtr) { // Convert the integer value to the right size to ensure we get the // proper extension or truncation. - Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0), + Constant *C0 = Context.getConstantExprIntegerCast(CE0->getOperand(0), IntPtrTy, false); - Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0), + Constant *C1 = Context.getConstantExprIntegerCast(CE1->getOperand(0), IntPtrTy, false); Constant *NewOps[] = { C0, C1 }; return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, @@ -533,7 +533,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, } } } - return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]); + return Context.getConstantExprCompare(Predicate, Ops[0], Ops[1]); } @@ -542,8 +542,8 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, /// constant expression, or null if something is funny and we can't decide. Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE, - LLVMContext *Context) { - if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType())) + LLVMContext &Context) { + if (CE->getOperand(1) != Context.getNullValue(CE->getOperand(1)->getType())) return 0; // Do not allow stepping over the value! // Loop over all of the operands, tracking down which value we are @@ -558,9 +558,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) { C = CS->getOperand(El); } else if (isa<ConstantAggregateZero>(C)) { - C = Context->getNullValue(STy->getElementType(El)); + C = Context.getNullValue(STy->getElementType(El)); } else if (isa<UndefValue>(C)) { - C = Context->getUndef(STy->getElementType(El)); + C = Context.getUndef(STy->getElementType(El)); } else { return 0; } @@ -571,9 +571,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) C = CA->getOperand(CI->getZExtValue()); else if (isa<ConstantAggregateZero>(C)) - C = Context->getNullValue(ATy->getElementType()); + C = Context.getNullValue(ATy->getElementType()); else if (isa<UndefValue>(C)) - C = Context->getUndef(ATy->getElementType()); + C = Context.getUndef(ATy->getElementType()); else return 0; } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) { @@ -582,9 +582,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) C = CP->getOperand(CI->getZExtValue()); else if (isa<ConstantAggregateZero>(C)) - C = Context->getNullValue(PTy->getElementType()); + C = Context.getNullValue(PTy->getElementType()); else if (isa<UndefValue>(C)) - C = Context->getUndef(PTy->getElementType()); + C = Context.getUndef(PTy->getElementType()); else return 0; } else { @@ -679,7 +679,7 @@ llvm::canConstantFoldCallTo(const Function *F) { } static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, - const Type *Ty, LLVMContext *Context) { + const Type *Ty, LLVMContext &Context) { errno = 0; V = NativeFP(V); if (errno != 0) { @@ -688,9 +688,9 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, } if (Ty == Type::FloatTy) - return Context->getConstantFP(APFloat((float)V)); + return Context.getConstantFP(APFloat((float)V)); if (Ty == Type::DoubleTy) - return Context->getConstantFP(APFloat(V)); + return Context.getConstantFP(APFloat(V)); llvm_unreachable("Can only constant fold float/double"); return 0; // dummy return to suppress warning } @@ -698,7 +698,7 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, double W, const Type *Ty, - LLVMContext *Context) { + LLVMContext &Context) { errno = 0; V = NativeFP(V, W); if (errno != 0) { @@ -707,9 +707,9 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), } if (Ty == Type::FloatTy) - return Context->getConstantFP(APFloat((float)V)); + return Context.getConstantFP(APFloat((float)V)); if (Ty == Type::DoubleTy) - return Context->getConstantFP(APFloat(V)); + return Context.getConstantFP(APFloat(V)); llvm_unreachable("Can only constant fold float/double"); return 0; // dummy return to suppress warning } @@ -721,7 +721,7 @@ Constant * llvm::ConstantFoldCall(Function *F, Constant* const* Operands, unsigned NumOperands) { if (!F->hasName()) return 0; - LLVMContext *Context = F->getContext(); + LLVMContext &Context = F->getContext(); const char *Str = F->getNameStart(); unsigned Len = F->getNameLen(); @@ -775,7 +775,7 @@ llvm::ConstantFoldCall(Function *F, if (V >= -0.0) return ConstantFoldFP(sqrt, V, Ty, Context); else // Undefined - return Context->getNullValue(Ty); + return Context.getNullValue(Ty); } break; case 's': @@ -801,13 +801,13 @@ llvm::ConstantFoldCall(Function *F, } } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) { if (Len > 11 && !memcmp(Str, "llvm.bswap", 10)) - return Context->getConstantInt(Op->getValue().byteSwap()); + return Context.getConstantInt(Op->getValue().byteSwap()); else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10)) - return Context->getConstantInt(Ty, Op->getValue().countPopulation()); + return Context.getConstantInt(Ty, Op->getValue().countPopulation()); else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9)) - return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros()); + return Context.getConstantInt(Ty, Op->getValue().countTrailingZeros()); else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9)) - return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros()); + return Context.getConstantInt(Ty, Op->getValue().countLeadingZeros()); } } else if (NumOperands == 2) { if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) { @@ -830,10 +830,10 @@ llvm::ConstantFoldCall(Function *F, } } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) { if (!strcmp(Str, "llvm.powi.f32")) { - return Context->getConstantFP(APFloat((float)std::pow((float)Op1V, + return Context.getConstantFP(APFloat((float)std::pow((float)Op1V, (int)Op2C->getZExtValue()))); } else if (!strcmp(Str, "llvm.powi.f64")) { - return Context->getConstantFP(APFloat((double)std::pow((double)Op1V, + return Context.getConstantFP(APFloat((double)std::pow((double)Op1V, (int)Op2C->getZExtValue()))); } } diff --git a/lib/Analysis/IPA/Andersens.cpp b/lib/Analysis/IPA/Andersens.cpp index 1fdd87a..71d66f6 100644 --- a/lib/Analysis/IPA/Andersens.cpp +++ b/lib/Analysis/IPA/Andersens.cpp @@ -693,7 +693,7 @@ void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) { // If the object in the points-to set is the null object, then the null // pointer is a must alias. if (Pointee == &GraphNodes[NullObject]) - RetVals.push_back(Context->getNullValue(P->getType())); + RetVals.push_back(P->getContext().getNullValue(P->getType())); } } AliasAnalysis::getMustAliases(P, RetVals); diff --git a/lib/Analysis/LoopVR.cpp b/lib/Analysis/LoopVR.cpp index e4dac8f..ccd5400 100644 --- a/lib/Analysis/LoopVR.cpp +++ b/lib/Analysis/LoopVR.cpp @@ -42,6 +42,8 @@ ConstantRange LoopVR::getRange(const SCEV *S, const SCEV *T, ScalarEvolution &SE if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) return ConstantRange(C->getValue()->getValue()); + + LLVMContext &Context = SE.getContext(); ConstantRange FullSet(cast<IntegerType>(S->getType())->getBitWidth(), true); @@ -73,8 +75,8 @@ ConstantRange LoopVR::getRange(const SCEV *S, const SCEV *T, ScalarEvolution &SE ConstantRange X = getRange(Mul->getOperand(0), T, SE); if (X.isFullSet()) return FullSet; - const IntegerType *Ty = Context->getIntegerType(X.getBitWidth()); - const IntegerType *ExTy = Context->getIntegerType(X.getBitWidth() * + const IntegerType *Ty = Context.getIntegerType(X.getBitWidth()); + const IntegerType *ExTy = Context.getIntegerType(X.getBitWidth() * Mul->getNumOperands()); ConstantRange XExt = X.zeroExtend(ExTy->getBitWidth()); diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 62b2032..cbeda2d 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -192,13 +192,13 @@ const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { } const SCEV *ScalarEvolution::getConstant(const APInt& Val) { - return getConstant(Context->getConstantInt(Val)); + return getConstant(getContext().getConstantInt(Val)); } const SCEV * ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { return getConstant( - Context->getConstantInt(cast<IntegerType>(Ty), V, isSigned)); + getContext().getConstantInt(cast<IntegerType>(Ty), V, isSigned)); } const Type *SCEVConstant::getType() const { return V->getType(); } @@ -1518,7 +1518,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) { ++Idx; while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { // We found two constants, fold them together! - ConstantInt *Fold = Context->getConstantInt(LHSC->getValue()->getValue() * + ConstantInt *Fold = getContext().getConstantInt(LHSC->getValue()->getValue() * RHSC->getValue()->getValue()); Ops[0] = getConstant(Fold); Ops.erase(Ops.begin()+1); // Erase the folded element @@ -1740,7 +1740,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { Constant *LHSCV = LHSC->getValue(); Constant *RHSCV = RHSC->getValue(); - return getConstant(cast<ConstantInt>(Context->getConstantExprUDiv(LHSCV, + return getConstant(cast<ConstantInt>(getContext().getConstantExprUDiv(LHSCV, RHSCV))); } } @@ -1869,7 +1869,7 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { assert(Idx < Ops.size()); while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { // We found two constants, fold them together! - ConstantInt *Fold = Context->getConstantInt( + ConstantInt *Fold = getContext().getConstantInt( APIntOps::smax(LHSC->getValue()->getValue(), RHSC->getValue()->getValue())); Ops[0] = getConstant(Fold); @@ -1966,7 +1966,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { assert(Idx < Ops.size()); while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { // We found two constants, fold them together! - ConstantInt *Fold = Context->getConstantInt( + ConstantInt *Fold = getContext().getConstantInt( APIntOps::umax(LHSC->getValue()->getValue(), RHSC->getValue()->getValue())); Ops[0] = getConstant(Fold); @@ -2133,7 +2133,7 @@ const SCEV *ScalarEvolution::getSCEV(Value *V) { /// specified signed integer value and return a SCEV for the constant. const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); - return getConstant(Context->getConstantInt(ITy, Val)); + return getConstant(getContext().getConstantInt(ITy, Val)); } /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V @@ -2141,24 +2141,24 @@ const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) return getConstant( - cast<ConstantInt>(Context->getConstantExprNeg(VC->getValue()))); + cast<ConstantInt>(getContext().getConstantExprNeg(VC->getValue()))); const Type *Ty = V->getType(); Ty = getEffectiveSCEVType(Ty); return getMulExpr(V, - getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty)))); + getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty)))); } /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) return getConstant( - cast<ConstantInt>(Context->getConstantExprNot(VC->getValue()))); + cast<ConstantInt>(getContext().getConstantExprNot(VC->getValue()))); const Type *Ty = V->getType(); Ty = getEffectiveSCEVType(Ty); const SCEV *AllOnes = - getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty))); + getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty))); return getMinusSCEV(AllOnes, V); } @@ -2896,7 +2896,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { // Turn shift left of a constant amount into a multiply. if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); - Constant *X = Context->getConstantInt( + Constant *X = getContext().getConstantInt( APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); } @@ -2906,7 +2906,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { // Turn logical shift right of a constant into a unsigned divide. if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); - Constant *X = Context->getConstantInt( + Constant *X = getContext().getConstantInt( APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); } @@ -3477,7 +3477,7 @@ EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, /// the addressed element of the initializer or null if the index expression is /// invalid. static Constant * -GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV, +GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV, const std::vector<ConstantInt*> &Indices) { Constant *Init = GV->getInitializer(); for (unsigned i = 0, e = Indices.size(); i != e; ++i) { @@ -3491,10 +3491,10 @@ GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV, } else if (isa<ConstantAggregateZero>(Init)) { if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { assert(Idx < STy->getNumElements() && "Bad struct index!"); - Init = Context->getNullValue(STy->getElementType(Idx)); + Init = Context.getNullValue(STy->getElementType(Idx)); } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { if (Idx >= ATy->getNumElements()) return 0; // Bogus program - Init = Context->getNullValue(ATy->getElementType()); + Init = Context.getNullValue(ATy->getElementType()); } else { llvm_unreachable("Unknown constant aggregate type!"); } @@ -3558,14 +3558,14 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( unsigned MaxSteps = MaxBruteForceIterations; for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { - ConstantInt *ItCst = Context->getConstantInt( + ConstantInt *ItCst = getContext().getConstantInt( cast<IntegerType>(IdxExpr->getType()), IterationNum); ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); // Form the GEP offset. Indexes[VarIdxNum] = Val; - Constant *Result = GetAddressedElementFromGlobal(Context, GV, Indexes); + Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes); if (Result == 0) break; // Cannot compute! // Evaluate the condition for this iteration. @@ -3649,7 +3649,7 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { if (Constant *C = dyn_cast<Constant>(V)) return C; if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; Instruction *I = cast<Instruction>(V); - LLVMContext *Context = I->getParent()->getContext(); + LLVMContext &Context = I->getParent()->getContext(); std::vector<Constant*> Operands; Operands.resize(I->getNumOperands()); @@ -3869,10 +3869,11 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { if (const CmpInst *CI = dyn_cast<CmpInst>(I)) C = ConstantFoldCompareInstOperands(CI->getPredicate(), &Operands[0], Operands.size(), - Context); + getContext()); else C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), - &Operands[0], Operands.size(), Context); + &Operands[0], Operands.size(), + getContext()); Pair.first->second = C; return getSCEV(C); } @@ -4068,12 +4069,12 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { return std::make_pair(CNC, CNC); } - LLVMContext *Context = SE.getContext(); + LLVMContext &Context = SE.getContext(); ConstantInt *Solution1 = - Context->getConstantInt((NegB + SqrtVal).sdiv(TwoA)); + Context.getConstantInt((NegB + SqrtVal).sdiv(TwoA)); ConstantInt *Solution2 = - Context->getConstantInt((NegB - SqrtVal).sdiv(TwoA)); + Context.getConstantInt((NegB - SqrtVal).sdiv(TwoA)); return std::make_pair(SE.getConstant(Solution1), SE.getConstant(Solution2)); @@ -4141,7 +4142,7 @@ const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { #endif // Pick the smallest positive root value. if (ConstantInt *CB = - dyn_cast<ConstantInt>(Context->getConstantExprICmp(ICmpInst::ICMP_ULT, + dyn_cast<ConstantInt>(getContext().getConstantExprICmp(ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { if (CB->getZExtValue() == false) std::swap(R1, R2); // R1 is the minimum root now. @@ -4681,7 +4682,7 @@ const SCEV *ScalarEvolution::getBECount(const SCEV *Start, // Check Add for unsigned overflow. // TODO: More sophisticated things could be done here. - const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1); + const Type *WideTy = getContext().getIntegerType(getTypeSizeInBits(Ty) + 1); const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); @@ -4835,7 +4836,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, // The exit value should be (End+A)/A. APInt ExitVal = (End + A).udiv(A); - ConstantInt *ExitValue = SE.getContext()->getConstantInt(ExitVal); + ConstantInt *ExitValue = SE.getContext().getConstantInt(ExitVal); // Evaluate at the exit value. If we really did fall out of the valid // range, then we computed our trip count, otherwise wrap around or other @@ -4847,7 +4848,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, // Ensure that the previous value is in the range. This is a sanity check. assert(Range.contains( EvaluateConstantChrecAtConstant(this, - SE.getContext()->getConstantInt(ExitVal - One), SE)->getValue()) && + SE.getContext().getConstantInt(ExitVal - One), SE)->getValue()) && "Linear scev computation is off in a bad way!"); return SE.getConstant(ExitValue); } else if (isQuadratic()) { @@ -4868,7 +4869,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, // Pick the smallest positive root value. if (ConstantInt *CB = dyn_cast<ConstantInt>( - SE.getContext()->getConstantExprICmp(ICmpInst::ICMP_ULT, + SE.getContext().getConstantExprICmp(ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { if (CB->getZExtValue() == false) std::swap(R1, R2); // R1 is the minimum root now. @@ -4882,7 +4883,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, if (Range.contains(R1Val->getValue())) { // The next iteration must be out of the range... ConstantInt *NextVal = - SE.getContext()->getConstantInt(R1->getValue()->getValue()+1); + SE.getContext().getConstantInt(R1->getValue()->getValue()+1); R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); if (!Range.contains(R1Val->getValue())) @@ -4893,7 +4894,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, // If R1 was not in the range, then it is a good return value. Make // sure that R1-1 WAS in the range though, just in case. ConstantInt *NextVal = - SE.getContext()->getConstantInt(R1->getValue()->getValue()-1); + SE.getContext().getConstantInt(R1->getValue()->getValue()-1); R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); if (Range.contains(R1Val->getValue())) return R1; diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp index b6af26a..6d55ffc 100644 --- a/lib/Analysis/ScalarEvolutionExpander.cpp +++ b/lib/Analysis/ScalarEvolutionExpander.cpp @@ -55,7 +55,7 @@ Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) { // FIXME: keep track of the cast instruction. if (Constant *C = dyn_cast<Constant>(V)) - return getContext()->getConstantExprCast(Op, C, Ty); + return getContext().getConstantExprCast(Op, C, Ty); if (Argument *A = dyn_cast<Argument>(V)) { // Check to see if there is already a cast! @@ -126,7 +126,7 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, // Fold a binop with constant operands. if (Constant *CLHS = dyn_cast<Constant>(LHS)) if (Constant *CRHS = dyn_cast<Constant>(RHS)) - return getContext()->getConstantExpr(Opcode, CLHS, CRHS); + return getContext().getConstantExpr(Opcode, CLHS, CRHS); // Do a quick scan to see if we have this binop nearby. If so, reuse it. unsigned ScanLimit = 6; @@ -167,7 +167,7 @@ static bool FactorOutConstant(const SCEV *&S, // For a Constant, check for a multiple of the given factor. if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { ConstantInt *CI = - SE.getContext()->getConstantInt(C->getValue()->getValue().sdiv(Factor)); + SE.getContext().getConstantInt(C->getValue()->getValue().sdiv(Factor)); // If the quotient is zero and the remainder is non-zero, reject // the value at this scale. It will be considered for subsequent // smaller scales. @@ -285,7 +285,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, Ops = NewOps; AnyNonZeroIndices |= !ScaledOps.empty(); Value *Scaled = ScaledOps.empty() ? - getContext()->getNullValue(Ty) : + getContext().getNullValue(Ty) : expandCodeFor(SE.getAddExpr(ScaledOps), Ty); GepIndices.push_back(Scaled); @@ -299,7 +299,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, if (FullOffset < SL.getSizeInBytes()) { unsigned ElIdx = SL.getElementContainingOffset(FullOffset); GepIndices.push_back( - getContext()->getConstantInt(Type::Int32Ty, ElIdx)); + getContext().getConstantInt(Type::Int32Ty, ElIdx)); ElTy = STy->getTypeAtIndex(ElIdx); Ops[0] = SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); @@ -328,7 +328,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, // Fold a GEP with constant operands. if (Constant *CLHS = dyn_cast<Constant>(V)) if (Constant *CRHS = dyn_cast<Constant>(Idx)) - return getContext()->getConstantExprGetElementPtr(CLHS, &CRHS, 1); + return getContext().getConstantExprGetElementPtr(CLHS, &CRHS, 1); // Do a quick scan to see if we have this GEP nearby. If so, reuse it. unsigned ScanLimit = 6; @@ -400,7 +400,7 @@ Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { // -1 * ... ---> 0 - ... if (FirstOp == 1) - V = InsertBinop(Instruction::Sub, getContext()->getNullValue(Ty), V); + V = InsertBinop(Instruction::Sub, getContext().getNullValue(Ty), V); return V; } @@ -412,7 +412,7 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { const APInt &RHS = SC->getValue()->getValue(); if (RHS.isPowerOf2()) return InsertBinop(Instruction::LShr, LHS, - getContext()->getConstantInt(Ty, RHS.logBase2())); + getContext().getConstantInt(Ty, RHS.logBase2())); } Value *RHS = expandCodeFor(S->getRHS(), Ty); @@ -522,7 +522,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { BasicBlock *Preheader = L->getLoopPreheader(); PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin()); InsertedValues.insert(PN); - PN->addIncoming(getContext()->getNullValue(Ty), Preheader); + PN->addIncoming(getContext().getNullValue(Ty), Preheader); pred_iterator HPI = pred_begin(Header); assert(HPI != pred_end(Header) && "Loop with zero preds???"); @@ -532,7 +532,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { // Insert a unit add instruction right before the terminator corresponding // to the back-edge. - Constant *One = getContext()->getConstantInt(Ty, 1); + Constant *One = getContext().getConstantInt(Ty, 1); Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next", (*HPI)->getTerminator()); InsertedValues.insert(Add); diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index 4cca313..b392b7e 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -824,7 +824,7 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, SmallVector<unsigned, 10> &Idxs, unsigned IdxSkip, - LLVMContext *Context, + LLVMContext &Context, Instruction *InsertBefore) { const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); if (STy) { @@ -882,13 +882,13 @@ Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, // // All inserted insertvalue instructions are inserted before InsertBefore Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, - const unsigned *idx_end, LLVMContext *Context, + const unsigned *idx_end, LLVMContext &Context, Instruction *InsertBefore) { assert(InsertBefore && "Must have someplace to insert!"); const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), idx_begin, idx_end); - Value *To = Context->getUndef(IndexedType); + Value *To = Context.getUndef(IndexedType); SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); unsigned IdxSkip = Idxs.size(); @@ -903,7 +903,7 @@ Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, /// If InsertBefore is not null, this function will duplicate (modified) /// insertvalues when a part of a nested struct is extracted. Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, - const unsigned *idx_end, LLVMContext *Context, + const unsigned *idx_end, LLVMContext &Context, Instruction *InsertBefore) { // Nothing to index? Just return V then (this is useful at the end of our // recursion) @@ -917,11 +917,11 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, const CompositeType *PTy = cast<CompositeType>(V->getType()); if (isa<UndefValue>(V)) - return Context->getUndef(ExtractValueInst::getIndexedType(PTy, + return Context.getUndef(ExtractValueInst::getIndexedType(PTy, idx_begin, idx_end)); else if (isa<ConstantAggregateZero>(V)) - return Context->getNullValue(ExtractValueInst::getIndexedType(PTy, + return Context.getNullValue(ExtractValueInst::getIndexedType(PTy, idx_begin, idx_end)); else if (Constant *C = dyn_cast<Constant>(V)) { |