diff options
author | Dan Gohman <gohman@apple.com> | 2008-11-25 00:52:40 +0000 |
---|---|---|
committer | Dan Gohman <gohman@apple.com> | 2008-11-25 00:52:40 +0000 |
commit | 21d9003087c9a707e6cd95460136b499df358fb8 (patch) | |
tree | 1cfc267392250dd28a6d3c70050e3dcd359b68d4 /lib/CodeGen/ScheduleDAG.cpp | |
parent | 662165d2249746b01b154287d3f5ed92f6293c2b (diff) | |
download | external_llvm-21d9003087c9a707e6cd95460136b499df358fb8.zip external_llvm-21d9003087c9a707e6cd95460136b499df358fb8.tar.gz external_llvm-21d9003087c9a707e6cd95460136b499df358fb8.tar.bz2 |
Initial support for anti-dependence breaking. Currently this code does not
introduce any new spilling; it just uses unused registers.
Refactor the SUnit topological sort code out of the RRList scheduler and
make use of it to help with the post-pass scheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59999 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/ScheduleDAG.cpp')
-rw-r--r-- | lib/CodeGen/ScheduleDAG.cpp | 201 |
1 files changed, 201 insertions, 0 deletions
diff --git a/lib/CodeGen/ScheduleDAG.cpp b/lib/CodeGen/ScheduleDAG.cpp index 046d337..7088313 100644 --- a/lib/CodeGen/ScheduleDAG.cpp +++ b/lib/CodeGen/ScheduleDAG.cpp @@ -263,3 +263,204 @@ void ScheduleDAG::VerifySchedule(bool isBottomUp) { "The number of nodes scheduled doesn't match the expected number!"); } #endif + +/// InitDAGTopologicalSorting - create the initial topological +/// ordering from the DAG to be scheduled. +/// +/// The idea of the algorithm is taken from +/// "Online algorithms for managing the topological order of +/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly +/// This is the MNR algorithm, which was first introduced by +/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in +/// "Maintaining a topological order under edge insertions". +/// +/// Short description of the algorithm: +/// +/// Topological ordering, ord, of a DAG maps each node to a topological +/// index so that for all edges X->Y it is the case that ord(X) < ord(Y). +/// +/// This means that if there is a path from the node X to the node Z, +/// then ord(X) < ord(Z). +/// +/// This property can be used to check for reachability of nodes: +/// if Z is reachable from X, then an insertion of the edge Z->X would +/// create a cycle. +/// +/// The algorithm first computes a topological ordering for the DAG by +/// initializing the Index2Node and Node2Index arrays and then tries to keep +/// the ordering up-to-date after edge insertions by reordering the DAG. +/// +/// On insertion of the edge X->Y, the algorithm first marks by calling DFS +/// the nodes reachable from Y, and then shifts them using Shift to lie +/// immediately after X in Index2Node. +void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { + unsigned DAGSize = SUnits.size(); + std::vector<SUnit*> WorkList; + WorkList.reserve(DAGSize); + + Index2Node.resize(DAGSize); + Node2Index.resize(DAGSize); + + // Initialize the data structures. + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &SUnits[i]; + int NodeNum = SU->NodeNum; + unsigned Degree = SU->Succs.size(); + // Temporarily use the Node2Index array as scratch space for degree counts. + Node2Index[NodeNum] = Degree; + + // Is it a node without dependencies? + if (Degree == 0) { + assert(SU->Succs.empty() && "SUnit should have no successors"); + // Collect leaf nodes. + WorkList.push_back(SU); + } + } + + int Id = DAGSize; + while (!WorkList.empty()) { + SUnit *SU = WorkList.back(); + WorkList.pop_back(); + Allocate(SU->NodeNum, --Id); + for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + SUnit *SU = I->Dep; + if (!--Node2Index[SU->NodeNum]) + // If all dependencies of the node are processed already, + // then the node can be computed now. + WorkList.push_back(SU); + } + } + + Visited.resize(DAGSize); + +#ifndef NDEBUG + // Check correctness of the ordering + for (unsigned i = 0, e = DAGSize; i != e; ++i) { + SUnit *SU = &SUnits[i]; + for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] && + "Wrong topological sorting"); + } + } +#endif +} + +/// AddPred - Updates the topological ordering to accomodate an edge +/// to be added from SUnit X to SUnit Y. +void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { + int UpperBound, LowerBound; + LowerBound = Node2Index[Y->NodeNum]; + UpperBound = Node2Index[X->NodeNum]; + bool HasLoop = false; + // Is Ord(X) < Ord(Y) ? + if (LowerBound < UpperBound) { + // Update the topological order. + Visited.reset(); + DFS(Y, UpperBound, HasLoop); + assert(!HasLoop && "Inserted edge creates a loop!"); + // Recompute topological indexes. + Shift(Visited, LowerBound, UpperBound); + } +} + +/// RemovePred - Updates the topological ordering to accomodate an +/// an edge to be removed from the specified node N from the predecessors +/// of the current node M. +void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { + // InitDAGTopologicalSorting(); +} + +/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark +/// all nodes affected by the edge insertion. These nodes will later get new +/// topological indexes by means of the Shift method. +void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) { + std::vector<const SUnit*> WorkList; + WorkList.reserve(SUnits.size()); + + WorkList.push_back(SU); + while (!WorkList.empty()) { + SU = WorkList.back(); + WorkList.pop_back(); + Visited.set(SU->NodeNum); + for (int I = SU->Succs.size()-1; I >= 0; --I) { + int s = SU->Succs[I].Dep->NodeNum; + if (Node2Index[s] == UpperBound) { + HasLoop = true; + return; + } + // Visit successors if not already and in affected region. + if (!Visited.test(s) && Node2Index[s] < UpperBound) { + WorkList.push_back(SU->Succs[I].Dep); + } + } + } +} + +/// Shift - Renumber the nodes so that the topological ordering is +/// preserved. +void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, + int UpperBound) { + std::vector<int> L; + int shift = 0; + int i; + + for (i = LowerBound; i <= UpperBound; ++i) { + // w is node at topological index i. + int w = Index2Node[i]; + if (Visited.test(w)) { + // Unmark. + Visited.reset(w); + L.push_back(w); + shift = shift + 1; + } else { + Allocate(w, i - shift); + } + } + + for (unsigned j = 0; j < L.size(); ++j) { + Allocate(L[j], i - shift); + i = i + 1; + } +} + + +/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will +/// create a cycle. +bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { + if (IsReachable(TargetSU, SU)) + return true; + for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) + if (I->Cost < 0 && IsReachable(TargetSU, I->Dep)) + return true; + return false; +} + +/// IsReachable - Checks if SU is reachable from TargetSU. +bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, const SUnit *TargetSU) { + // If insertion of the edge SU->TargetSU would create a cycle + // then there is a path from TargetSU to SU. + int UpperBound, LowerBound; + LowerBound = Node2Index[TargetSU->NodeNum]; + UpperBound = Node2Index[SU->NodeNum]; + bool HasLoop = false; + // Is Ord(TargetSU) < Ord(SU) ? + if (LowerBound < UpperBound) { + Visited.reset(); + // There may be a path from TargetSU to SU. Check for it. + DFS(TargetSU, UpperBound, HasLoop); + } + return HasLoop; +} + +/// Allocate - assign the topological index to the node n. +void ScheduleDAGTopologicalSort::Allocate(int n, int index) { + Node2Index[n] = index; + Index2Node[index] = n; +} + +ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort( + std::vector<SUnit> &sunits) + : SUnits(sunits) {} |