summaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64CollectLOH.cpp
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-05-29 02:49:00 -0700
committerStephen Hines <srhines@google.com>2014-05-29 02:49:00 -0700
commitdce4a407a24b04eebc6a376f8e62b41aaa7b071f (patch)
treedcebc53f2b182f145a2e659393bf9a0472cedf23 /lib/Target/AArch64/AArch64CollectLOH.cpp
parent220b921aed042f9e520c26cffd8282a94c66c3d5 (diff)
downloadexternal_llvm-dce4a407a24b04eebc6a376f8e62b41aaa7b071f.zip
external_llvm-dce4a407a24b04eebc6a376f8e62b41aaa7b071f.tar.gz
external_llvm-dce4a407a24b04eebc6a376f8e62b41aaa7b071f.tar.bz2
Update LLVM for 3.5 rebase (r209712).
Change-Id: I149556c940fb7dc92d075273c87ff584f400941f
Diffstat (limited to 'lib/Target/AArch64/AArch64CollectLOH.cpp')
-rw-r--r--lib/Target/AArch64/AArch64CollectLOH.cpp1117
1 files changed, 1117 insertions, 0 deletions
diff --git a/lib/Target/AArch64/AArch64CollectLOH.cpp b/lib/Target/AArch64/AArch64CollectLOH.cpp
new file mode 100644
index 0000000..6b1f096
--- /dev/null
+++ b/lib/Target/AArch64/AArch64CollectLOH.cpp
@@ -0,0 +1,1117 @@
+//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that collect the Linker Optimization Hint (LOH).
+// This pass should be run at the very end of the compilation flow, just before
+// assembly printer.
+// To be useful for the linker, the LOH must be printed into the assembly file.
+//
+// A LOH describes a sequence of instructions that may be optimized by the
+// linker.
+// This same sequence cannot be optimized by the compiler because some of
+// the information will be known at link time.
+// For instance, consider the following sequence:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// L3: ldr xC, [xB, #imm]
+// This sequence can be turned into:
+// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
+// L3: ldr xC, sym+#imm
+// It may also be turned into either the following more efficient
+// code sequences:
+// - If sym@PAGEOFF + #imm fits the encoding space of L3.
+// L1: adrp xA, sym@PAGE
+// L3: ldr xC, [xB, sym@PAGEOFF + #imm]
+// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
+// L1: adr xA, sym
+// L3: ldr xC, [xB, #imm]
+//
+// To be valid a LOH must meet all the requirements needed by all the related
+// possible linker transformations.
+// For instance, using the running example, the constraints to emit
+// ".loh AdrpAddLdr" are:
+// - L1, L2, and L3 instructions are of the expected type, i.e.,
+// respectively ADRP, ADD (immediate), and LD.
+// - The result of L1 is used only by L2.
+// - The register argument (xA) used in the ADD instruction is defined
+// only by L1.
+// - The result of L2 is used only by L3.
+// - The base address (xB) in L3 is defined only L2.
+// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
+// @PAGE/@PAGEOFF with no additional constants
+//
+// Currently supported LOHs are:
+// * So called non-ADRP-related:
+// - .loh AdrpAddLdr L1, L2, L3:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// L3: ldr xC, [xB, #imm]
+// - .loh AdrpLdrGotLdr L1, L2, L3:
+// L1: adrp xA, sym@GOTPAGE
+// L2: ldr xB, [xA, sym@GOTPAGEOFF]
+// L3: ldr xC, [xB, #imm]
+// - .loh AdrpLdr L1, L3:
+// L1: adrp xA, sym@PAGE
+// L3: ldr xC, [xA, sym@PAGEOFF]
+// - .loh AdrpAddStr L1, L2, L3:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// L3: str xC, [xB, #imm]
+// - .loh AdrpLdrGotStr L1, L2, L3:
+// L1: adrp xA, sym@GOTPAGE
+// L2: ldr xB, [xA, sym@GOTPAGEOFF]
+// L3: str xC, [xB, #imm]
+// - .loh AdrpAdd L1, L2:
+// L1: adrp xA, sym@PAGE
+// L2: add xB, xA, sym@PAGEOFF
+// For all these LOHs, L1, L2, L3 form a simple chain:
+// L1 result is used only by L2 and L2 result by L3.
+// L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
+// by L1.
+// All these LOHs aim at using more efficient load/store patterns by folding
+// some instructions used to compute the address directly into the load/store.
+//
+// * So called ADRP-related:
+// - .loh AdrpAdrp L2, L1:
+// L2: ADRP xA, sym1@PAGE
+// L1: ADRP xA, sym2@PAGE
+// L2 dominates L1 and xA is not redifined between L2 and L1
+// This LOH aims at getting rid of redundant ADRP instructions.
+//
+// The overall design for emitting the LOHs is:
+// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
+// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
+// 1. Associates them a label.
+// 2. Emits them in a MCStreamer (EmitLOHDirective).
+// - The MCMachOStreamer records them into the MCAssembler.
+// - The MCAsmStreamer prints them.
+// - Other MCStreamers ignore them.
+// 3. Closes the MCStreamer:
+// - The MachObjectWriter gets them from the MCAssembler and writes
+// them in the object file.
+// - Other ObjectWriters ignore them.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-collect-loh"
+
+static cl::opt<bool>
+PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
+ cl::desc("Restrict analysis to registers invovled"
+ " in LOHs"),
+ cl::init(true));
+
+static cl::opt<bool>
+BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
+ cl::desc("Restrict analysis at basic block scope"),
+ cl::init(true));
+
+STATISTIC(NumADRPSimpleCandidate,
+ "Number of simplifiable ADRP dominate by another");
+STATISTIC(NumADRPComplexCandidate2,
+ "Number of simplifiable ADRP reachable by 2 defs");
+STATISTIC(NumADRPComplexCandidate3,
+ "Number of simplifiable ADRP reachable by 3 defs");
+STATISTIC(NumADRPComplexCandidateOther,
+ "Number of simplifiable ADRP reachable by 4 or more defs");
+STATISTIC(NumADDToSTRWithImm,
+ "Number of simplifiable STR with imm reachable by ADD");
+STATISTIC(NumLDRToSTRWithImm,
+ "Number of simplifiable STR with imm reachable by LDR");
+STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
+STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
+STATISTIC(NumADDToLDRWithImm,
+ "Number of simplifiable LDR with imm reachable by ADD");
+STATISTIC(NumLDRToLDRWithImm,
+ "Number of simplifiable LDR with imm reachable by LDR");
+STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
+STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
+STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
+STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
+STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
+STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
+STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
+STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
+STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
+
+namespace llvm {
+void initializeAArch64CollectLOHPass(PassRegistry &);
+}
+
+namespace {
+struct AArch64CollectLOH : public MachineFunctionPass {
+ static char ID;
+ AArch64CollectLOH() : MachineFunctionPass(ID) {
+ initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "AArch64 Collect Linker Optimization Hint (LOH)";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<MachineDominatorTree>();
+ }
+
+private:
+};
+
+/// A set of MachineInstruction.
+typedef SetVector<const MachineInstr *> SetOfMachineInstr;
+/// Map a basic block to a set of instructions per register.
+/// This is used to represent the exposed uses of a basic block
+/// per register.
+typedef MapVector<const MachineBasicBlock *, SetOfMachineInstr *>
+BlockToSetOfInstrsPerColor;
+/// Map a basic block to an instruction per register.
+/// This is used to represent the live-out definitions of a basic block
+/// per register.
+typedef MapVector<const MachineBasicBlock *, const MachineInstr **>
+BlockToInstrPerColor;
+/// Map an instruction to a set of instructions. Used to represent the
+/// mapping def to reachable uses or use to definitions.
+typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
+/// Map a basic block to a BitVector.
+/// This is used to record the kill registers per basic block.
+typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
+
+/// Map a register to a dense id.
+typedef DenseMap<unsigned, unsigned> MapRegToId;
+/// Map a dense id to a register. Used for debug purposes.
+typedef SmallVector<unsigned, 32> MapIdToReg;
+} // end anonymous namespace.
+
+char AArch64CollectLOH::ID = 0;
+
+INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
+ "AArch64 Collect Linker Optimization Hint (LOH)", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
+ "AArch64 Collect Linker Optimization Hint (LOH)", false,
+ false)
+
+/// Given a couple (MBB, reg) get the corresponding set of instruction from
+/// the given "sets".
+/// If this couple does not reference any set, an empty set is added to "sets"
+/// for this couple and returned.
+/// \param nbRegs is used internally allocate some memory. It must be consistent
+/// with the way sets is used.
+static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
+ const MachineBasicBlock &MBB, unsigned reg,
+ unsigned nbRegs) {
+ SetOfMachineInstr *result;
+ BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
+ if (it != sets.end())
+ result = it->second;
+ else
+ result = sets[&MBB] = new SetOfMachineInstr[nbRegs];
+
+ return result[reg];
+}
+
+/// Given a couple (reg, MI) get the corresponding set of instructions from the
+/// the given "sets".
+/// This is used to get the uses record in sets of a definition identified by
+/// MI and reg, i.e., MI defines reg.
+/// If the couple does not reference anything, an empty set is added to
+/// "sets[reg]".
+/// \pre set[reg] is valid.
+static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
+ const MachineInstr &MI) {
+ return sets[reg][&MI];
+}
+
+/// Same as getUses but does not modify the input map: sets.
+/// \return NULL if the couple (reg, MI) is not in sets.
+static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
+ const MachineInstr &MI) {
+ InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
+ if (Res != sets[reg].end())
+ return &(Res->second);
+ return nullptr;
+}
+
+/// Initialize the reaching definition algorithm:
+/// For each basic block BB in MF, record:
+/// - its kill set.
+/// - its reachable uses (uses that are exposed to BB's predecessors).
+/// - its the generated definitions.
+/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
+/// the list of uses of exposed defintions.
+/// \param ADRPMode specifies to only consider ADRP instructions for generated
+/// definition. It also consider definitions of ADRP instructions as uses and
+/// ignore other uses. The ADRPMode is used to collect the information for LHO
+/// that involve ADRP operation only.
+static void initReachingDef(MachineFunction &MF,
+ InstrToInstrs *ColorOpToReachedUses,
+ BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
+ BlockToSetOfInstrsPerColor &ReachableUses,
+ const MapRegToId &RegToId,
+ const MachineInstr *DummyOp, bool ADRPMode) {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+
+ unsigned NbReg = RegToId.size();
+
+ for (MachineBasicBlock &MBB : MF) {
+ const MachineInstr **&BBGen = Gen[&MBB];
+ BBGen = new const MachineInstr *[NbReg];
+ memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg);
+
+ BitVector &BBKillSet = Kill[&MBB];
+ BBKillSet.resize(NbReg);
+ for (const MachineInstr &MI : MBB) {
+ bool IsADRP = MI.getOpcode() == AArch64::ADRP;
+
+ // Process uses first.
+ if (IsADRP || !ADRPMode)
+ for (const MachineOperand &MO : MI.operands()) {
+ // Treat ADRP def as use, as the goal of the analysis is to find
+ // ADRP defs reached by other ADRP defs.
+ if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
+ (ADRPMode && (!IsADRP || !MO.isDef())))
+ continue;
+ unsigned CurReg = MO.getReg();
+ MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
+ if (ItCurRegId == RegToId.end())
+ continue;
+ CurReg = ItCurRegId->second;
+
+ // if CurReg has not been defined, this use is reachable.
+ if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
+ getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
+ // current basic block definition for this color, if any, is in Gen.
+ if (BBGen[CurReg])
+ getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
+ }
+
+ // Process clobbers.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isRegMask())
+ continue;
+ // Clobbers kill the related colors.
+ const uint32_t *PreservedRegs = MO.getRegMask();
+
+ // Set generated regs.
+ for (const auto Entry : RegToId) {
+ unsigned Reg = Entry.second;
+ // Use the global register ID when querying APIs external to this
+ // pass.
+ if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
+ // Do not register clobbered definition for no ADRP.
+ // This definition is not used anyway (otherwise register
+ // allocation is wrong).
+ BBGen[Reg] = ADRPMode ? &MI : nullptr;
+ BBKillSet.set(Reg);
+ }
+ }
+ }
+
+ // Process register defs.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned CurReg = MO.getReg();
+ MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
+ if (ItCurRegId == RegToId.end())
+ continue;
+
+ for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
+ MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
+ assert(ItRegId != RegToId.end() &&
+ "Sub-register of an "
+ "involved register, not recorded as involved!");
+ BBKillSet.set(ItRegId->second);
+ BBGen[ItRegId->second] = &MI;
+ }
+ BBGen[ItCurRegId->second] = &MI;
+ }
+ }
+
+ // If we restrict our analysis to basic block scope, conservatively add a
+ // dummy
+ // use for each generated value.
+ if (!ADRPMode && DummyOp && !MBB.succ_empty())
+ for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
+ if (BBGen[CurReg])
+ getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
+ }
+}
+
+/// Reaching def core algorithm:
+/// while an Out has changed
+/// for each bb
+/// for each color
+/// In[bb][color] = U Out[bb.predecessors][color]
+/// insert reachableUses[bb][color] in each in[bb][color]
+/// op.reachedUses
+///
+/// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
+static void reachingDefAlgorithm(MachineFunction &MF,
+ InstrToInstrs *ColorOpToReachedUses,
+ BlockToSetOfInstrsPerColor &In,
+ BlockToSetOfInstrsPerColor &Out,
+ BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
+ BlockToSetOfInstrsPerColor &ReachableUses,
+ unsigned NbReg) {
+ bool HasChanged;
+ do {
+ HasChanged = false;
+ for (MachineBasicBlock &MBB : MF) {
+ unsigned CurReg;
+ for (CurReg = 0; CurReg < NbReg; ++CurReg) {
+ SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
+ SetOfMachineInstr &BBReachableUses =
+ getSet(ReachableUses, MBB, CurReg, NbReg);
+ SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
+ unsigned Size = BBOutSet.size();
+ // In[bb][color] = U Out[bb.predecessors][color]
+ for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
+ SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
+ BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
+ }
+ // insert reachableUses[bb][color] in each in[bb][color] op.reachedses
+ for (const MachineInstr *MI : BBInSet) {
+ SetOfMachineInstr &OpReachedUses =
+ getUses(ColorOpToReachedUses, CurReg, *MI);
+ OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
+ }
+ // Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
+ if (!Kill[&MBB].test(CurReg))
+ BBOutSet.insert(BBInSet.begin(), BBInSet.end());
+ if (Gen[&MBB][CurReg])
+ BBOutSet.insert(Gen[&MBB][CurReg]);
+ HasChanged |= BBOutSet.size() != Size;
+ }
+ }
+ } while (HasChanged);
+}
+
+/// Release all memory dynamically allocated during the reaching
+/// definition algorithm.
+static void finitReachingDef(BlockToSetOfInstrsPerColor &In,
+ BlockToSetOfInstrsPerColor &Out,
+ BlockToInstrPerColor &Gen,
+ BlockToSetOfInstrsPerColor &ReachableUses) {
+ for (auto &IT : Out)
+ delete[] IT.second;
+ for (auto &IT : In)
+ delete[] IT.second;
+ for (auto &IT : ReachableUses)
+ delete[] IT.second;
+ for (auto &IT : Gen)
+ delete[] IT.second;
+}
+
+/// Reaching definition algorithm.
+/// \param MF function on which the algorithm will operate.
+/// \param[out] ColorOpToReachedUses will contain the result of the reaching
+/// def algorithm.
+/// \param ADRPMode specify whether the reaching def algorithm should be tuned
+/// for ADRP optimization. \see initReachingDef for more details.
+/// \param DummyOp if not NULL, the algorithm will work at
+/// basic block scope and will set for every exposed definition a use to
+/// @p DummyOp.
+/// \pre ColorOpToReachedUses is an array of at least number of registers of
+/// InstrToInstrs.
+static void reachingDef(MachineFunction &MF,
+ InstrToInstrs *ColorOpToReachedUses,
+ const MapRegToId &RegToId, bool ADRPMode = false,
+ const MachineInstr *DummyOp = nullptr) {
+ // structures:
+ // For each basic block.
+ // Out: a set per color of definitions that reach the
+ // out boundary of this block.
+ // In: Same as Out but for in boundary.
+ // Gen: generated color in this block (one operation per color).
+ // Kill: register set of killed color in this block.
+ // ReachableUses: a set per color of uses (operation) reachable
+ // for "In" definitions.
+ BlockToSetOfInstrsPerColor Out, In, ReachableUses;
+ BlockToInstrPerColor Gen;
+ BlockToRegSet Kill;
+
+ // Initialize Gen, kill and reachableUses.
+ initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
+ DummyOp, ADRPMode);
+
+ // Algo.
+ if (!DummyOp)
+ reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
+ ReachableUses, RegToId.size());
+
+ // finit.
+ finitReachingDef(In, Out, Gen, ReachableUses);
+}
+
+#ifndef NDEBUG
+/// print the result of the reaching definition algorithm.
+static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
+ unsigned NbReg, const TargetRegisterInfo *TRI,
+ const MapIdToReg &IdToReg) {
+ unsigned CurReg;
+ for (CurReg = 0; CurReg < NbReg; ++CurReg) {
+ if (ColorOpToReachedUses[CurReg].empty())
+ continue;
+ DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
+
+ for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
+ DEBUG(dbgs() << "Def:\n");
+ DEBUG(DefsIt.first->print(dbgs()));
+ DEBUG(dbgs() << "Reachable uses:\n");
+ for (const MachineInstr *MI : DefsIt.second) {
+ DEBUG(MI->print(dbgs()));
+ }
+ }
+ }
+}
+#endif // NDEBUG
+
+/// Answer the following question: Can Def be one of the definition
+/// involved in a part of a LOH?
+static bool canDefBePartOfLOH(const MachineInstr *Def) {
+ unsigned Opc = Def->getOpcode();
+ // Accept ADRP, ADDLow and LOADGot.
+ switch (Opc) {
+ default:
+ return false;
+ case AArch64::ADRP:
+ return true;
+ case AArch64::ADDXri:
+ // Check immediate to see if the immediate is an address.
+ switch (Def->getOperand(2).getType()) {
+ default:
+ return false;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_BlockAddress:
+ return true;
+ }
+ case AArch64::LDRXui:
+ // Check immediate to see if the immediate is an address.
+ switch (Def->getOperand(2).getType()) {
+ default:
+ return false;
+ case MachineOperand::MO_GlobalAddress:
+ return true;
+ }
+ }
+ // Unreachable.
+ return false;
+}
+
+/// Check whether the given instruction can the end of a LOH chain involving a
+/// store.
+static bool isCandidateStore(const MachineInstr *Instr) {
+ switch (Instr->getOpcode()) {
+ default:
+ return false;
+ case AArch64::STRBui:
+ case AArch64::STRHui:
+ case AArch64::STRWui:
+ case AArch64::STRXui:
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ // In case we have str xA, [xA, #imm], this is two different uses
+ // of xA and we cannot fold, otherwise the xA stored may be wrong,
+ // even if #imm == 0.
+ if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
+ return true;
+ }
+ return false;
+}
+
+/// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
+/// Build the Use to Defs information and filter out obvious non-LOH candidates.
+/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
+/// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
+/// i.e., no simple chain.
+/// \param ADRPMode -- \see initReachingDef.
+static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
+ const InstrToInstrs *ColorOpToReachedUses,
+ const MapRegToId &RegToId,
+ bool ADRPMode = false) {
+
+ SetOfMachineInstr NotCandidate;
+ unsigned NbReg = RegToId.size();
+ MapRegToId::const_iterator EndIt = RegToId.end();
+ for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
+ // If this color is never defined, continue.
+ if (ColorOpToReachedUses[CurReg].empty())
+ continue;
+
+ for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
+ for (const MachineInstr *MI : DefsIt.second) {
+ const MachineInstr *Def = DefsIt.first;
+ MapRegToId::const_iterator It;
+ // if all the reaching defs are not adrp, this use will not be
+ // simplifiable.
+ if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
+ (!ADRPMode && !canDefBePartOfLOH(Def)) ||
+ (!ADRPMode && isCandidateStore(MI) &&
+ // store are LOH candidate iff the end of the chain is used as
+ // base.
+ ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
+ It->second != CurReg))) {
+ NotCandidate.insert(MI);
+ continue;
+ }
+ // Do not consider self reaching as a simplifiable case for ADRP.
+ if (!ADRPMode || MI != DefsIt.first) {
+ UseToReachingDefs[MI].insert(DefsIt.first);
+ // If UsesIt has several reaching definitions, it is not
+ // candidate for simplificaton in non-ADRPMode.
+ if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
+ NotCandidate.insert(MI);
+ }
+ }
+ }
+ }
+ for (const MachineInstr *Elem : NotCandidate) {
+ DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
+ // It would have been better if we could just remove the entry
+ // from the map. Because of that, we have to filter the garbage
+ // (second.empty) in the subsequence analysis.
+ UseToReachingDefs[Elem].clear();
+ }
+}
+
+/// Based on the use to defs information (in ADRPMode), compute the
+/// opportunities of LOH ADRP-related.
+static void computeADRP(const InstrToInstrs &UseToDefs,
+ AArch64FunctionInfo &AArch64FI,
+ const MachineDominatorTree *MDT) {
+ DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
+ for (const auto &Entry : UseToDefs) {
+ unsigned Size = Entry.second.size();
+ if (Size == 0)
+ continue;
+ if (Size == 1) {
+ const MachineInstr *L2 = *Entry.second.begin();
+ const MachineInstr *L1 = Entry.first;
+ if (!MDT->dominates(L2, L1)) {
+ DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
+ << '\n');
+ continue;
+ }
+ DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
+ SmallVector<const MachineInstr *, 2> Args;
+ Args.push_back(L2);
+ Args.push_back(L1);
+ AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
+ ++NumADRPSimpleCandidate;
+ }
+#ifdef DEBUG
+ else if (Size == 2)
+ ++NumADRPComplexCandidate2;
+ else if (Size == 3)
+ ++NumADRPComplexCandidate3;
+ else
+ ++NumADRPComplexCandidateOther;
+#endif
+ // if Size < 1, the use should have been removed from the candidates
+ assert(Size >= 1 && "No reaching defs for that use!");
+ }
+}
+
+/// Check whether the given instruction can be the end of a LOH chain
+/// involving a load.
+static bool isCandidateLoad(const MachineInstr *Instr) {
+ switch (Instr->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDRSBWui:
+ case AArch64::LDRSBXui:
+ case AArch64::LDRSHWui:
+ case AArch64::LDRSHXui:
+ case AArch64::LDRSWui:
+ case AArch64::LDRBui:
+ case AArch64::LDRHui:
+ case AArch64::LDRWui:
+ case AArch64::LDRXui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
+ return false;
+ return true;
+ }
+ // Unreachable.
+ return false;
+}
+
+/// Check whether the given instruction can load a litteral.
+static bool supportLoadFromLiteral(const MachineInstr *Instr) {
+ switch (Instr->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDRSWui:
+ case AArch64::LDRWui:
+ case AArch64::LDRXui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ return true;
+ }
+ // Unreachable.
+ return false;
+}
+
+/// Check whether the given instruction is a LOH candidate.
+/// \param UseToDefs is used to check that Instr is at the end of LOH supported
+/// chain.
+/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
+/// already been filtered out.
+static bool isCandidate(const MachineInstr *Instr,
+ const InstrToInstrs &UseToDefs,
+ const MachineDominatorTree *MDT) {
+ if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
+ return false;
+
+ const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
+ if (Def->getOpcode() != AArch64::ADRP) {
+ // At this point, Def is ADDXri or LDRXui of the right type of
+ // symbol, because we filtered out the uses that were not defined
+ // by these kind of instructions (+ ADRP).
+
+ // Check if this forms a simple chain: each intermediate node must
+ // dominates the next one.
+ if (!MDT->dominates(Def, Instr))
+ return false;
+ // Move one node up in the simple chain.
+ if (UseToDefs.find(Def) ==
+ UseToDefs.end()
+ // The map may contain garbage we have to ignore.
+ ||
+ UseToDefs.find(Def)->second.empty())
+ return false;
+ Instr = Def;
+ Def = *UseToDefs.find(Def)->second.begin();
+ }
+ // Check if we reached the top of the simple chain:
+ // - top is ADRP.
+ // - check the simple chain property: each intermediate node must
+ // dominates the next one.
+ if (Def->getOpcode() == AArch64::ADRP)
+ return MDT->dominates(Def, Instr);
+ return false;
+}
+
+static bool registerADRCandidate(const MachineInstr &Use,
+ const InstrToInstrs &UseToDefs,
+ const InstrToInstrs *DefsPerColorToUses,
+ AArch64FunctionInfo &AArch64FI,
+ SetOfMachineInstr *InvolvedInLOHs,
+ const MapRegToId &RegToId) {
+ // Look for opportunities to turn ADRP -> ADD or
+ // ADRP -> LDR GOTPAGEOFF into ADR.
+ // If ADRP has more than one use. Give up.
+ if (Use.getOpcode() != AArch64::ADDXri &&
+ (Use.getOpcode() != AArch64::LDRXui ||
+ !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
+ return false;
+ InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
+ // The map may contain garbage that we need to ignore.
+ if (It == UseToDefs.end() || It->second.empty())
+ return false;
+ const MachineInstr &Def = **It->second.begin();
+ if (Def.getOpcode() != AArch64::ADRP)
+ return false;
+ // Check the number of users of ADRP.
+ const SetOfMachineInstr *Users =
+ getUses(DefsPerColorToUses,
+ RegToId.find(Def.getOperand(0).getReg())->second, Def);
+ if (Users->size() > 1) {
+ ++NumADRComplexCandidate;
+ return false;
+ }
+ ++NumADRSimpleCandidate;
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
+ "ADRP already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
+ "ADD already involved in LOH.");
+ DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
+
+ SmallVector<const MachineInstr *, 2> Args;
+ Args.push_back(&Def);
+ Args.push_back(&Use);
+
+ AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
+ : MCLOH_AdrpLdrGot,
+ Args);
+ return true;
+}
+
+/// Based on the use to defs information (in non-ADRPMode), compute the
+/// opportunities of LOH non-ADRP-related
+static void computeOthers(const InstrToInstrs &UseToDefs,
+ const InstrToInstrs *DefsPerColorToUses,
+ AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
+ const MachineDominatorTree *MDT) {
+ SetOfMachineInstr *InvolvedInLOHs = nullptr;
+#ifdef DEBUG
+ SetOfMachineInstr InvolvedInLOHsStorage;
+ InvolvedInLOHs = &InvolvedInLOHsStorage;
+#endif // DEBUG
+ DEBUG(dbgs() << "*** Compute LOH for Others\n");
+ // ADRP -> ADD/LDR -> LDR/STR pattern.
+ // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
+
+ // FIXME: When the statistics are not important,
+ // This initial filtering loop can be merged into the next loop.
+ // Currently, we didn't do it to have the same code for both DEBUG and
+ // NDEBUG builds. Indeed, the iterator of the second loop would need
+ // to be changed.
+ SetOfMachineInstr PotentialCandidates;
+ SetOfMachineInstr PotentialADROpportunities;
+ for (auto &Use : UseToDefs) {
+ // If no definition is available, this is a non candidate.
+ if (Use.second.empty())
+ continue;
+ // Keep only instructions that are load or store and at the end of
+ // a ADRP -> ADD/LDR/Nothing chain.
+ // We already filtered out the no-chain cases.
+ if (!isCandidate(Use.first, UseToDefs, MDT)) {
+ PotentialADROpportunities.insert(Use.first);
+ continue;
+ }
+ PotentialCandidates.insert(Use.first);
+ }
+
+ // Make the following distinctions for statistics as the linker does
+ // know how to decode instructions:
+ // - ADD/LDR/Nothing make there different patterns.
+ // - LDR/STR make two different patterns.
+ // Hence, 6 - 1 base patterns.
+ // (because ADRP-> Nothing -> STR is not simplifiable)
+
+ // The linker is only able to have a simple semantic, i.e., if pattern A
+ // do B.
+ // However, we want to see the opportunity we may miss if we were able to
+ // catch more complex cases.
+
+ // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
+ // A potential candidate becomes a candidate, if its current immediate
+ // operand is zero and all nodes of the chain have respectively only one user
+#ifdef DEBUG
+ SetOfMachineInstr DefsOfPotentialCandidates;
+#endif
+ for (const MachineInstr *Candidate : PotentialCandidates) {
+ // Get the definition of the candidate i.e., ADD or LDR.
+ const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
+ // Record the elements of the chain.
+ const MachineInstr *L1 = Def;
+ const MachineInstr *L2 = nullptr;
+ unsigned ImmediateDefOpc = Def->getOpcode();
+ if (Def->getOpcode() != AArch64::ADRP) {
+ // Check the number of users of this node.
+ const SetOfMachineInstr *Users =
+ getUses(DefsPerColorToUses,
+ RegToId.find(Def->getOperand(0).getReg())->second, *Def);
+ if (Users->size() > 1) {
+#ifdef DEBUG
+ // if all the uses of this def are in potential candidate, this is
+ // a complex candidate of level 2.
+ bool IsLevel2 = true;
+ for (const MachineInstr *MI : *Users) {
+ if (!PotentialCandidates.count(MI)) {
+ ++NumTooCplxLvl2;
+ IsLevel2 = false;
+ break;
+ }
+ }
+ if (IsLevel2)
+ ++NumCplxLvl2;
+#endif // DEBUG
+ PotentialADROpportunities.insert(Def);
+ continue;
+ }
+ L2 = Def;
+ Def = *UseToDefs.find(Def)->second.begin();
+ L1 = Def;
+ } // else the element in the middle of the chain is nothing, thus
+ // Def already contains the first element of the chain.
+
+ // Check the number of users of the first node in the chain, i.e., ADRP
+ const SetOfMachineInstr *Users =
+ getUses(DefsPerColorToUses,
+ RegToId.find(Def->getOperand(0).getReg())->second, *Def);
+ if (Users->size() > 1) {
+#ifdef DEBUG
+ // if all the uses of this def are in the defs of the potential candidate,
+ // this is a complex candidate of level 1
+ if (DefsOfPotentialCandidates.empty()) {
+ // lazy init
+ DefsOfPotentialCandidates = PotentialCandidates;
+ for (const MachineInstr *Candidate : PotentialCandidates) {
+ if (!UseToDefs.find(Candidate)->second.empty())
+ DefsOfPotentialCandidates.insert(
+ *UseToDefs.find(Candidate)->second.begin());
+ }
+ }
+ bool Found = false;
+ for (auto &Use : *Users) {
+ if (!DefsOfPotentialCandidates.count(Use)) {
+ ++NumTooCplxLvl1;
+ Found = true;
+ break;
+ }
+ }
+ if (!Found)
+ ++NumCplxLvl1;
+#endif // DEBUG
+ continue;
+ }
+
+ bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
+ // If the chain is three instructions long and ldr is the second element,
+ // then this ldr must load form GOT, otherwise this is not a correct chain.
+ if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != AArch64II::MO_GOT)
+ continue;
+ SmallVector<const MachineInstr *, 3> Args;
+ MCLOHType Kind;
+ if (isCandidateLoad(Candidate)) {
+ if (!L2) {
+ // At this point, the candidate LOH indicates that the ldr instruction
+ // may use a direct access to the symbol. There is not such encoding
+ // for loads of byte and half.
+ if (!supportLoadFromLiteral(Candidate))
+ continue;
+
+ DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
+ << '\n');
+ Kind = MCLOH_AdrpLdr;
+ Args.push_back(L1);
+ Args.push_back(Candidate);
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
+ "L1 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
+ "Candidate already involved in LOH.");
+ ++NumADRPToLDR;
+ } else {
+ DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
+ << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
+ << '\n');
+
+ Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
+ Args.push_back(L1);
+ Args.push_back(L2);
+ Args.push_back(Candidate);
+
+ PotentialADROpportunities.remove(L2);
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
+ "L1 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
+ "L2 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
+ "Candidate already involved in LOH.");
+#ifdef DEBUG
+ // get the immediate of the load
+ if (Candidate->getOperand(2).getImm() == 0)
+ if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToLDR;
+ else
+ ++NumLDRToLDR;
+ else if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToLDRWithImm;
+ else
+ ++NumLDRToLDRWithImm;
+#endif // DEBUG
+ }
+ } else {
+ if (ImmediateDefOpc == AArch64::ADRP)
+ continue;
+ else {
+
+ DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
+ << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
+ << '\n');
+
+ Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
+ Args.push_back(L1);
+ Args.push_back(L2);
+ Args.push_back(Candidate);
+
+ PotentialADROpportunities.remove(L2);
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
+ "L1 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
+ "L2 already involved in LOH.");
+ assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
+ "Candidate already involved in LOH.");
+#ifdef DEBUG
+ // get the immediate of the store
+ if (Candidate->getOperand(2).getImm() == 0)
+ if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToSTR;
+ else
+ ++NumLDRToSTR;
+ else if (ImmediateDefOpc == AArch64::ADDXri)
+ ++NumADDToSTRWithImm;
+ else
+ ++NumLDRToSTRWithImm;
+#endif // DEBUG
+ }
+ }
+ AArch64FI.addLOHDirective(Kind, Args);
+ }
+
+ // Now, we grabbed all the big patterns, check ADR opportunities.
+ for (const MachineInstr *Candidate : PotentialADROpportunities)
+ registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
+ InvolvedInLOHs, RegToId);
+}
+
+/// Look for every register defined by potential LOHs candidates.
+/// Map these registers with dense id in @p RegToId and vice-versa in
+/// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
+static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
+ MapIdToReg &IdToReg,
+ const TargetRegisterInfo *TRI) {
+ unsigned CurRegId = 0;
+ if (!PreCollectRegister) {
+ unsigned NbReg = TRI->getNumRegs();
+ for (; CurRegId < NbReg; ++CurRegId) {
+ RegToId[CurRegId] = CurRegId;
+ DEBUG(IdToReg.push_back(CurRegId));
+ DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
+ }
+ return;
+ }
+
+ DEBUG(dbgs() << "** Collect Involved Register\n");
+ for (const auto &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ if (!canDefBePartOfLOH(&MI))
+ continue;
+
+ // Process defs
+ for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
+ IOEnd = MI.operands_end();
+ IO != IOEnd; ++IO) {
+ if (!IO->isReg() || !IO->isDef())
+ continue;
+ unsigned CurReg = IO->getReg();
+ for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
+ if (RegToId.find(*AI) == RegToId.end()) {
+ DEBUG(IdToReg.push_back(*AI);
+ assert(IdToReg[CurRegId] == *AI &&
+ "Reg index mismatches insertion index."));
+ RegToId[*AI] = CurRegId++;
+ DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
+ }
+ }
+ }
+ }
+}
+
+bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
+
+ MapRegToId RegToId;
+ MapIdToReg IdToReg;
+ AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
+ assert(AArch64FI && "No MachineFunctionInfo for this function!");
+
+ DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
+
+ collectInvolvedReg(MF, RegToId, IdToReg, TRI);
+ if (RegToId.empty())
+ return false;
+
+ MachineInstr *DummyOp = nullptr;
+ if (BasicBlockScopeOnly) {
+ const AArch64InstrInfo *TII =
+ static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
+ // For local analysis, create a dummy operation to record uses that are not
+ // local.
+ DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
+ }
+
+ unsigned NbReg = RegToId.size();
+ bool Modified = false;
+
+ // Start with ADRP.
+ InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
+
+ // Compute the reaching def in ADRP mode, meaning ADRP definitions
+ // are first considered as uses.
+ reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
+ DEBUG(dbgs() << "ADRP reaching defs\n");
+ DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
+
+ // Translate the definition to uses map into a use to definitions map to ease
+ // statistic computation.
+ InstrToInstrs ADRPToReachingDefs;
+ reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
+
+ // Compute LOH for ADRP.
+ computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
+ delete[] ColorOpToReachedUses;
+
+ // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
+ ColorOpToReachedUses = new InstrToInstrs[NbReg];
+
+ // first perform a regular reaching def analysis.
+ reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
+ DEBUG(dbgs() << "All reaching defs\n");
+ DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
+
+ // Turn that into a use to defs to ease statistic computation.
+ InstrToInstrs UsesToReachingDefs;
+ reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
+
+ // Compute other than AdrpAdrp LOH.
+ computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
+ MDT);
+ delete[] ColorOpToReachedUses;
+
+ if (BasicBlockScopeOnly)
+ MF.DeleteMachineInstr(DummyOp);
+
+ return Modified;
+}
+
+/// createAArch64CollectLOHPass - returns an instance of the Statistic for
+/// linker optimization pass.
+FunctionPass *llvm::createAArch64CollectLOHPass() {
+ return new AArch64CollectLOH();
+}