diff options
author | Chris Lattner <sabre@nondot.org> | 2009-09-01 17:09:55 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2009-09-01 17:09:55 +0000 |
commit | 61c6ba85715fdcb66f746678879984151f1e5485 (patch) | |
tree | 81caf766e4618dd6f8ac7dc03f867f754926b928 /lib/Transforms/Scalar/MemCpyOptimizer.cpp | |
parent | eed51b04e3ea4305ebb19c8c7688713dab554268 (diff) | |
download | external_llvm-61c6ba85715fdcb66f746678879984151f1e5485.zip external_llvm-61c6ba85715fdcb66f746678879984151f1e5485.tar.gz external_llvm-61c6ba85715fdcb66f746678879984151f1e5485.tar.bz2 |
random code cleanups, no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80682 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/Scalar/MemCpyOptimizer.cpp')
-rw-r--r-- | lib/Transforms/Scalar/MemCpyOptimizer.cpp | 125 |
1 files changed, 62 insertions, 63 deletions
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp index 8d47e53..cd89235 100644 --- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp +++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp @@ -37,7 +37,7 @@ STATISTIC(NumMemSetInfer, "Number of memsets inferred"); /// true for all i8 values obviously, but is also true for i32 0, i32 -1, /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated /// byte store (e.g. i16 0x1234), return null. -static Value *isBytewiseValue(Value *V, LLVMContext& Context) { +static Value *isBytewiseValue(Value *V, LLVMContext &Context) { // All byte-wide stores are splatable, even of arbitrary variables. if (V->getType() == Type::getInt8Ty(Context)) return V; @@ -315,9 +315,9 @@ namespace { } // Helper fuctions - bool processStore(StoreInst *SI, BasicBlock::iterator& BBI); - bool processMemCpy(MemCpyInst* M); - bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C); + bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); + bool processMemCpy(MemCpyInst *M); + bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C); bool iterateOnFunction(Function &F); }; @@ -336,7 +336,7 @@ static RegisterPass<MemCpyOpt> X("memcpyopt", /// some other patterns to fold away. In particular, this looks for stores to /// neighboring locations of memory. If it sees enough consequtive ones /// (currently 4) it attempts to merge them together into a memcpy/memset. -bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) { +bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { if (SI->isVolatile()) return false; // There are two cases that are interesting for this code to handle: memcpy @@ -495,26 +495,26 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { // Deliberately get the source and destination with bitcasts stripped away, // because we'll need to do type comparisons based on the underlying type. - Value* cpyDest = cpy->getDest(); - Value* cpySrc = cpy->getSource(); + Value *cpyDest = cpy->getDest(); + Value *cpySrc = cpy->getSource(); CallSite CS = CallSite::get(C); // We need to be able to reason about the size of the memcpy, so we require // that it be a constant. - ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength()); + ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength()); if (!cpyLength) return false; // Require that src be an alloca. This simplifies the reasoning considerably. - AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc); + AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); if (!srcAlloca) return false; // Check that all of src is copied to dest. - TargetData* TD = getAnalysisIfAvailable<TargetData>(); + TargetData *TD = getAnalysisIfAvailable<TargetData>(); if (!TD) return false; - ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); + ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); if (!srcArraySize) return false; @@ -527,9 +527,9 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { // Check that accessing the first srcSize bytes of dest will not cause a // trap. Otherwise the transform is invalid since it might cause a trap // to occur earlier than it otherwise would. - if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) { + if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { // The destination is an alloca. Check it is larger than srcSize. - ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); + ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); if (!destArraySize) return false; @@ -538,13 +538,13 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { if (destSize < srcSize) return false; - } else if (Argument* A = dyn_cast<Argument>(cpyDest)) { + } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { // If the destination is an sret parameter then only accesses that are // outside of the returned struct type can trap. if (!A->hasStructRetAttr()) return false; - const Type* StructTy = cast<PointerType>(A->getType())->getElementType(); + const Type *StructTy = cast<PointerType>(A->getType())->getElementType(); uint64_t destSize = TD->getTypeAllocSize(StructTy); if (destSize < srcSize) @@ -560,14 +560,14 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(), srcAlloca->use_end()); while (!srcUseList.empty()) { - User* UI = srcUseList.back(); + User *UI = srcUseList.back(); srcUseList.pop_back(); if (isa<BitCastInst>(UI)) { for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); I != E; ++I) srcUseList.push_back(*I); - } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) { + } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) { if (G->hasAllZeroIndices()) for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); I != E; ++I) @@ -581,8 +581,8 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { // Since we're changing the parameter to the callsite, we need to make sure // that what would be the new parameter dominates the callsite. - DominatorTree& DT = getAnalysis<DominatorTree>(); - if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest)) + DominatorTree &DT = getAnalysis<DominatorTree>(); + if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) if (!DT.dominates(cpyDestInst, C)) return false; @@ -590,7 +590,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { // unexpected manner, for example via a global, which we deduce from // the use analysis, we also need to know that it does not sneakily // access dest. We rely on AA to figure this out for us. - AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); + AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) != AliasAnalysis::NoModRef) return false; @@ -603,11 +603,11 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), cpyDest->getName(), C); changedArgument = true; - if (CS.getArgument(i)->getType() != cpyDest->getType()) - CS.setArgument(i, CastInst::CreatePointerCast(cpyDest, - CS.getArgument(i)->getType(), cpyDest->getName(), C)); - else + if (CS.getArgument(i)->getType() == cpyDest->getType()) CS.setArgument(i, cpyDest); + else + CS.setArgument(i, CastInst::CreatePointerCast(cpyDest, + CS.getArgument(i)->getType(), cpyDest->getName(), C)); } if (!changedArgument) @@ -615,7 +615,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { // Drop any cached information about the call, because we may have changed // its dependence information by changing its parameter. - MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>(); + MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>(); MD.removeInstruction(C); // Remove the memcpy @@ -630,22 +630,22 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be /// a memcpy from X to Z (or potentially a memmove, depending on circumstances). /// This allows later passes to remove the first memcpy altogether. -bool MemCpyOpt::processMemCpy(MemCpyInst* M) { - MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>(); +bool MemCpyOpt::processMemCpy(MemCpyInst *M) { + MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>(); // The are two possible optimizations we can do for memcpy: - // a) memcpy-memcpy xform which exposes redundance for DSE - // b) call-memcpy xform for return slot optimization + // a) memcpy-memcpy xform which exposes redundance for DSE. + // b) call-memcpy xform for return slot optimization. MemDepResult dep = MD.getDependency(M); if (!dep.isClobber()) return false; if (!isa<MemCpyInst>(dep.getInst())) { - if (CallInst* C = dyn_cast<CallInst>(dep.getInst())) + if (CallInst *C = dyn_cast<CallInst>(dep.getInst())) return performCallSlotOptzn(M, C); return false; } - MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst()); + MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst()); // We can only transforms memcpy's where the dest of one is the source of the // other @@ -654,8 +654,8 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) { // Second, the length of the memcpy's must be the same, or the preceeding one // must be larger than the following one. - ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength()); - ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength()); + ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); + ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength()); if (!C1 || !C2) return false; @@ -667,7 +667,7 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) { // Finally, we have to make sure that the dest of the second does not // alias the source of the first - AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); + AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) != AliasAnalysis::NoAlias) return false; @@ -681,7 +681,7 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) { // If all checks passed, then we can transform these memcpy's const Type *Tys[1]; Tys[0] = M->getLength()->getType(); - Function* MemCpyFun = Intrinsic::getDeclaration( + Function *MemCpyFun = Intrinsic::getDeclaration( M->getParent()->getParent()->getParent(), M->getIntrinsicID(), Tys, 1); @@ -689,7 +689,7 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) { M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst() }; - CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M); + CallInst *C = CallInst::Create(MemCpyFun, Args, Args+4, "", M); // If C and M don't interfere, then this is a valid transformation. If they @@ -708,41 +708,40 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) { return false; } -// MemCpyOpt::runOnFunction - This is the main transformation entry point for a -// function. -// -bool MemCpyOpt::runOnFunction(Function& F) { - - bool changed = false; - bool shouldContinue = true; - - while (shouldContinue) { - shouldContinue = iterateOnFunction(F); - changed |= shouldContinue; - } - - return changed; -} - - -// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN +// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN. bool MemCpyOpt::iterateOnFunction(Function &F) { - bool changed_function = false; + bool MadeChange = false; - // Walk all instruction in the function + // Walk all instruction in the function. for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { - // Avoid invalidating the iterator - Instruction* I = BI++; + // Avoid invalidating the iterator. + Instruction *I = BI++; if (StoreInst *SI = dyn_cast<StoreInst>(I)) - changed_function |= processStore(SI, BI); - else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) { - changed_function |= processMemCpy(M); - } + MadeChange |= processStore(SI, BI); + else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) + MadeChange |= processMemCpy(M); } } - return changed_function; + return MadeChange; } + +// MemCpyOpt::runOnFunction - This is the main transformation entry point for a +// function. +// +bool MemCpyOpt::runOnFunction(Function &F) { + bool MadeChange = false; + while (1) { + if (!iterateOnFunction(F)) + break; + MadeChange = true; + } + + return MadeChange; +} + + + |