diff options
author | Chris Lattner <sabre@nondot.org> | 2002-06-25 16:13:24 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2002-06-25 16:13:24 +0000 |
commit | 7e70829632f82de15db187845666aaca6e04b792 (patch) | |
tree | 48dd2d804e7ebec9a3cbd8bf229cb2a2aa20dce5 /lib/Transforms | |
parent | 0b12b5f50ec77a8bd01b92d287c52d748619bb4b (diff) | |
download | external_llvm-7e70829632f82de15db187845666aaca6e04b792.zip external_llvm-7e70829632f82de15db187845666aaca6e04b792.tar.gz external_llvm-7e70829632f82de15db187845666aaca6e04b792.tar.bz2 |
MEGAPATCH checkin.
For details, See: docs/2002-06-25-MegaPatchInfo.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2779 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
22 files changed, 627 insertions, 711 deletions
diff --git a/lib/Transforms/ExprTypeConvert.cpp b/lib/Transforms/ExprTypeConvert.cpp index a1f6425..a6106b0 100644 --- a/lib/Transforms/ExprTypeConvert.cpp +++ b/lib/Transforms/ExprTypeConvert.cpp @@ -31,7 +31,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, static bool AllIndicesZero(const MemAccessInst *MAI) { for (User::const_op_iterator S = MAI->idx_begin(), E = MAI->idx_end(); S != E; ++S) - if (!isa<Constant>(*S) || !cast<Constant>(*S)->isNullValue()) + if (!isa<Constant>(S->get()) || !cast<Constant>(S->get())->isNullValue()) return false; return true; } @@ -110,7 +110,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty, unsigned Scale = (unsigned)ScaleVal * OldTypeSize / DataSize; // Locate the malloc instruction, because we may be inserting instructions - It = find(BB->getInstList().begin(), BB->getInstList().end(), MI); + It = MI; // If we have a scale, apply it first... if (Expr.Var) { @@ -118,7 +118,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty, if (Expr.Var->getType() != Type::UIntTy) { Instruction *CI = new CastInst(Expr.Var, Type::UIntTy); if (Expr.Var->hasName()) CI->setName(Expr.Var->getName()+"-uint"); - It = BB->getInstList().insert(It, CI)+1; + It = ++BB->getInstList().insert(It, CI); Expr.Var = CI; } @@ -127,7 +127,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty, BinaryOperator::create(Instruction::Mul, Expr.Var, ConstantUInt::get(Type::UIntTy, Scale)); if (Expr.Var->hasName()) ScI->setName(Expr.Var->getName()+"-scl"); - It = BB->getInstList().insert(It, ScI)+1; + It = ++BB->getInstList().insert(It, ScI); Expr.Var = ScI; } @@ -145,7 +145,7 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty, BinaryOperator::create(Instruction::Add, Expr.Var, ConstantUInt::get(Type::UIntTy, Offset)); if (Expr.Var->hasName()) AddI->setName(Expr.Var->getName()+"-off"); - It = BB->getInstList().insert(It, AddI)+1; + It = ++BB->getInstList().insert(It, AddI); Expr.Var = AddI; } @@ -193,9 +193,10 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, // We also do not allow conversion of a cast that casts from a ptr to array // of X to a *X. For example: cast [4 x %List *] * %val to %List * * // - if (PointerType *SPT = dyn_cast<PointerType>(I->getOperand(0)->getType())) - if (PointerType *DPT = dyn_cast<PointerType>(I->getType())) - if (ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType())) + if (const PointerType *SPT = + dyn_cast<PointerType>(I->getOperand(0)->getType())) + if (const PointerType *DPT = dyn_cast<PointerType>(I->getType())) + if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType())) if (AT->getElementType() == DPT->getElementType()) return false; break; @@ -475,7 +476,7 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { // and we could convert this to an appropriate GEP for the new type. // const PointerType *NewSrcTy = PointerType::get(PVTy); - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + BasicBlock::iterator It = I; // Check to see if 'N' is an expression that can be converted to // the appropriate size... if so, allow it. @@ -519,9 +520,7 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { assert(Res->getType() == Ty && "Didn't convert expr to correct type!"); - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); - assert(It != BIL.end() && "Instruction not in own basic block??"); - BIL.insert(It, Res); + BIL.insert(I, Res); // Add the instruction to the expression map VMC.ExprMap[I] = Res; @@ -618,9 +617,10 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, // We also do not allow conversion of a cast that casts from a ptr to array // of X to a *X. For example: cast [4 x %List *] * %val to %List * * // - if (PointerType *SPT = dyn_cast<PointerType>(I->getOperand(0)->getType())) - if (PointerType *DPT = dyn_cast<PointerType>(I->getType())) - if (ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType())) + if (const PointerType *SPT = + dyn_cast<PointerType>(I->getOperand(0)->getType())) + if (const PointerType *DPT = dyn_cast<PointerType>(I->getType())) + if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType())) if (AT->getElementType() == DPT->getElementType()) return false; return true; @@ -719,7 +719,7 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, // a whole structure at a time), so the level raiser must be trying to // store into the first field. Check for this and allow it now: // - if (StructType *SElTy = dyn_cast<StructType>(ElTy)) { + if (const StructType *SElTy = dyn_cast<StructType>(ElTy)) { unsigned Offset = 0; std::vector<Value*> Indices; ElTy = getStructOffsetType(ElTy, Offset, Indices, false); @@ -817,9 +817,9 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, // Are we trying to change the function pointer value to a new type? if (OpNum == 0) { - PointerType *PTy = dyn_cast<PointerType>(Ty); + const PointerType *PTy = dyn_cast<PointerType>(Ty); if (PTy == 0) return false; // Can't convert to a non-pointer type... - FunctionType *MTy = dyn_cast<FunctionType>(PTy->getElementType()); + const FunctionType *MTy = dyn_cast<FunctionType>(PTy->getElementType()); if (MTy == 0) return false; // Can't convert to a non ptr to function... // Perform sanity checks to make sure that new function type has the @@ -926,7 +926,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, if (isa<PointerType>(NewTy)) { Value *IndexVal = I->getOperand(OldVal == I->getOperand(0) ? 1 : 0); std::vector<Value*> Indices; - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + BasicBlock::iterator It = I; if (const Type *ETy = ConvertableToGEP(NewTy, IndexVal, Indices, &It)) { // If successful, convert the add to a GEP @@ -1016,7 +1016,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, // Convert a one index getelementptr into just about anything that is // desired. // - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + BasicBlock::iterator It = I; const Type *OldElTy = cast<PointerType>(I->getType())->getElementType(); unsigned DataSize = TD.getTypeSize(OldElTy); Value *Index = I->getOperand(1); @@ -1025,7 +1025,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, // Insert a multiply of the old element type is not a unit size... Index = BinaryOperator::create(Instruction::Mul, Index, ConstantUInt::get(Type::UIntTy, DataSize)); - It = BIL.insert(It, cast<Instruction>(Index))+1; + It = ++BIL.insert(It, cast<Instruction>(Index)); } // Perform the conversion now... @@ -1042,7 +1042,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, // Convert a getelementptr sbyte * %reg111, uint 16 freely back to // anything that is a pointer type... // - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + BasicBlock::iterator It = I; // Check to see if the second argument is an expression that can // be converted to the appropriate size... if so, allow it. @@ -1086,8 +1086,8 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, std::vector<Value*> Params(I->op_begin()+1, I->op_end()); if (Meth == OldVal) { // Changing the function pointer? - PointerType *NewPTy = cast<PointerType>(NewVal->getType()); - FunctionType *NewTy = cast<FunctionType>(NewPTy->getElementType()); + const PointerType *NewPTy = cast<PointerType>(NewVal->getType()); + const FunctionType *NewTy = cast<FunctionType>(NewPTy->getElementType()); const FunctionType::ParamTypes &PTs = NewTy->getParamTypes(); // Get an iterator to the call instruction so that we can insert casts for @@ -1096,7 +1096,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, // compatible. The reason for this is that we prefer to have resolved // functions but casted arguments if possible. // - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + BasicBlock::iterator It = I; // Convert over all of the call operands to their new types... but only // convert over the part that is not in the vararg section of the call. @@ -1107,7 +1107,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, // is a lossless cast... // Params[i] = new CastInst(Params[i], PTs[i], "call.resolve.cast"); - It = BIL.insert(It, cast<Instruction>(Params[i]))+1; + It = ++BIL.insert(It, cast<Instruction>(Params[i])); } Meth = NewVal; // Update call destination to new value @@ -1130,7 +1130,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, // If the instruction was newly created, insert it into the instruction // stream. // - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + BasicBlock::iterator It = I; assert(It != BIL.end() && "Instruction not in own basic block??"); BIL.insert(It, Res); // Keep It pointing to old instruction @@ -1186,7 +1186,7 @@ static void RecursiveDelete(ValueMapCache &Cache, Instruction *I) { for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) - if (Instruction *U = dyn_cast<Instruction>(*OI)) { + if (Instruction *U = dyn_cast<Instruction>(OI->get())) { *OI = 0; RecursiveDelete(Cache, U); } diff --git a/lib/Transforms/IPO/FunctionResolution.cpp b/lib/Transforms/IPO/FunctionResolution.cpp index 9eb6e54..6cb901b 100644 --- a/lib/Transforms/IPO/FunctionResolution.cpp +++ b/lib/Transforms/IPO/FunctionResolution.cpp @@ -13,8 +13,6 @@ #include "llvm/Transforms/CleanupGCCOutput.h" #include "llvm/Module.h" -#include "llvm/Function.h" -#include "llvm/BasicBlock.h" #include "llvm/SymbolTable.h" #include "llvm/DerivedTypes.h" #include "llvm/Pass.h" @@ -34,7 +32,7 @@ namespace { struct FunctionResolvingPass : public Pass { const char *getPassName() const { return "Resolve Functions"; } - bool run(Module *M); + bool run(Module &M); }; } @@ -50,12 +48,10 @@ static void ConvertCallTo(CallInst *CI, Function *Dest) { Dest->getFunctionType()->getParamTypes(); BasicBlock *BB = CI->getParent(); - // Get an iterator to where we want to insert cast instructions if the + // Keep an iterator to where we want to insert cast instructions if the // argument types don't agree. // - BasicBlock::iterator BBI = find(BB->begin(), BB->end(), CI); - assert(BBI != BB->end() && "CallInst not in parent block?"); - + BasicBlock::iterator BBI = CI; assert(CI->getNumOperands()-1 == ParamTys.size() && "Function calls resolved funny somehow, incompatible number of args"); @@ -68,7 +64,7 @@ static void ConvertCallTo(CallInst *CI, Function *Dest) { if (V->getType() != ParamTys[i-1]) { // Must insert a cast... Instruction *Cast = new CastInst(V, ParamTys[i-1]); - BBI = BB->getInstList().insert(BBI, Cast)+1; + BBI = ++BB->getInstList().insert(BBI, Cast); V = Cast; } @@ -80,7 +76,7 @@ static void ConvertCallTo(CallInst *CI, Function *Dest) { // Replace the old call instruction with a new call instruction that calls // the real function. // - BBI = BB->getInstList().insert(BBI, NewCall)+1; + BBI = ++BB->getInstList().insert(BBI, NewCall); // Remove the old call instruction from the program... BB->getInstList().remove(BBI); @@ -110,8 +106,8 @@ static void ConvertCallTo(CallInst *CI, Function *Dest) { } -bool FunctionResolvingPass::run(Module *M) { - SymbolTable *ST = M->getSymbolTable(); +bool FunctionResolvingPass::run(Module &M) { + SymbolTable *ST = M.getSymbolTable(); if (!ST) return false; std::map<string, vector<Function*> > Functions; @@ -151,9 +147,8 @@ bool FunctionResolvingPass::run(Module *M) { // warnings... here we will actually DCE the function so that it isn't // used later. // - if (Functions[i]->use_size() == 0) { - M->getFunctionList().remove(Functions[i]); - delete Functions[i]; + if (Functions[i]->use_empty()) { + M.getFunctionList().erase(Functions[i]); Functions.erase(Functions.begin()+i); Changed = true; ++NumResolved; diff --git a/lib/Transforms/IPO/InlineSimple.cpp b/lib/Transforms/IPO/InlineSimple.cpp index 12430e1..7d36e37 100644 --- a/lib/Transforms/IPO/InlineSimple.cpp +++ b/lib/Transforms/IPO/InlineSimple.cpp @@ -20,18 +20,16 @@ #include "llvm/Transforms/FunctionInlining.h" #include "llvm/Module.h" -#include "llvm/Function.h" #include "llvm/Pass.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/Type.h" -#include "llvm/Argument.h" #include "Support/StatisticReporter.h" - -static Statistic<> NumInlined("inline\t\t- Number of functions inlined"); #include <algorithm> #include <iostream> + +static Statistic<> NumInlined("inline\t\t- Number of functions inlined"); using std::cerr; // RemapInstruction - Convert the instruction operands from referencing the @@ -65,17 +63,16 @@ static inline void RemapInstruction(Instruction *I, // exists in the instruction stream. Similiarly this will inline a recursive // function by one level. // -bool InlineFunction(BasicBlock::iterator CIIt) { - assert(isa<CallInst>(*CIIt) && "InlineFunction only works on CallInst nodes"); - assert((*CIIt)->getParent() && "Instruction not embedded in basic block!"); - assert((*CIIt)->getParent()->getParent() && "Instruction not in function!"); +bool InlineFunction(CallInst *CI) { + assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes"); + assert(CI->getParent() && "Instruction not embedded in basic block!"); + assert(CI->getParent()->getParent() && "Instruction not in function!"); - CallInst *CI = cast<CallInst>(*CIIt); - const Function *CalledMeth = CI->getCalledFunction(); - if (CalledMeth == 0 || // Can't inline external function or indirect call! - CalledMeth->isExternal()) return false; + const Function *CalledFunc = CI->getCalledFunction(); + if (CalledFunc == 0 || // Can't inline external function or indirect call! + CalledFunc->isExternal()) return false; - //cerr << "Inlining " << CalledMeth->getName() << " into " + //cerr << "Inlining " << CalledFunc->getName() << " into " // << CurrentMeth->getName() << "\n"; BasicBlock *OrigBB = CI->getParent(); @@ -84,7 +81,7 @@ bool InlineFunction(BasicBlock::iterator CIIt) { // immediately before the call. The original basic block now ends with an // unconditional branch to NewBB, and NewBB starts with the call instruction. // - BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt); + BasicBlock *NewBB = OrigBB->splitBasicBlock(CI); NewBB->setName("InlinedFunctionReturnNode"); // Remove (unlink) the CallInst from the start of the new basic block. @@ -95,8 +92,8 @@ bool InlineFunction(BasicBlock::iterator CIIt) { // function. // PHINode *PHI = 0; - if (CalledMeth->getReturnType() != Type::VoidTy) { - PHI = new PHINode(CalledMeth->getReturnType(), CI->getName()); + if (CalledFunc->getReturnType() != Type::VoidTy) { + PHI = new PHINode(CalledFunc->getReturnType(), CI->getName()); // The PHI node should go at the front of the new basic block to merge all // possible incoming values. @@ -118,19 +115,17 @@ bool InlineFunction(BasicBlock::iterator CIIt) { // Add the function arguments to the mapping: (start counting at 1 to skip the // function reference itself) // - Function::ArgumentListType::const_iterator PTI = - CalledMeth->getArgumentList().begin(); + Function::const_aiterator PTI = CalledFunc->abegin(); for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI) - ValueMap[*PTI] = CI->getOperand(a); + ValueMap[PTI] = CI->getOperand(a); ValueMap[NewBB] = NewBB; // Returns get converted to reference NewBB // Loop over all of the basic blocks in the function, inlining them as // appropriate. Keep track of the first basic block of the function... // - for (Function::const_iterator BI = CalledMeth->begin(); - BI != CalledMeth->end(); ++BI) { - const BasicBlock *BB = *BI; + for (Function::const_iterator BB = CalledFunc->begin(); + BB != CalledFunc->end(); ++BB) { assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?"); // Create a new basic block to copy instructions into! @@ -148,23 +143,24 @@ bool InlineFunction(BasicBlock::iterator CIIt) { // Loop over all instructions copying them over... Instruction *NewInst; for (BasicBlock::const_iterator II = BB->begin(); - II != (BB->end()-1); ++II) { - IBB->getInstList().push_back((NewInst = (*II)->clone())); - ValueMap[*II] = NewInst; // Add instruction map to value. - if ((*II)->hasName()) - NewInst->setName((*II)->getName()+".i"); // .i = inlined once + II != --BB->end(); ++II) { + IBB->getInstList().push_back((NewInst = II->clone())); + ValueMap[II] = NewInst; // Add instruction map to value. + if (II->hasName()) + NewInst->setName(II->getName()+".i"); // .i = inlined once } // Copy over the terminator now... switch (TI->getOpcode()) { case Instruction::Ret: { - const ReturnInst *RI = cast<const ReturnInst>(TI); + const ReturnInst *RI = cast<ReturnInst>(TI); if (PHI) { // The PHI node should include this value! assert(RI->getReturnValue() && "Ret should have value!"); assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); - PHI->addIncoming((Value*)RI->getReturnValue(), cast<BasicBlock>(BB)); + PHI->addIncoming((Value*)RI->getReturnValue(), + (BasicBlock*)cast<BasicBlock>(&*BB)); } // Add a branch to the code that was after the original Call. @@ -185,15 +181,14 @@ bool InlineFunction(BasicBlock::iterator CIIt) { // Loop over all of the instructions in the function, fixing up operand // references as we go. This uses ValueMap to do all the hard work. // - for (Function::const_iterator BI = CalledMeth->begin(); - BI != CalledMeth->end(); ++BI) { - const BasicBlock *BB = *BI; + for (Function::const_iterator BB = CalledFunc->begin(); + BB != CalledFunc->end(); ++BB) { BasicBlock *NBB = (BasicBlock*)ValueMap[BB]; // Loop over all instructions, fixing each one as we find it... // - for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++) - RemapInstruction(*II, ValueMap); + for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); ++II) + RemapInstruction(II, ValueMap); } if (PHI) RemapInstruction(PHI, ValueMap); // Fix the PHI node also... @@ -204,24 +199,13 @@ bool InlineFunction(BasicBlock::iterator CIIt) { TerminatorInst *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); - Br->setOperand(0, ValueMap[CalledMeth->front()]); + Br->setOperand(0, ValueMap[&CalledFunc->front()]); // Since we are now done with the CallInst, we can finally delete it. delete CI; return true; } -bool InlineFunction(CallInst *CI) { - assert(CI->getParent() && "CallInst not embeded in BasicBlock!"); - BasicBlock *PBB = CI->getParent(); - - BasicBlock::iterator CallIt = find(PBB->begin(), PBB->end(), CI); - - assert(CallIt != PBB->end() && - "CallInst has parent that doesn't contain CallInst?!?"); - return InlineFunction(CallIt); -} - static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) { assert(CI->getParent() && CI->getParent()->getParent() && "Call not embedded into a function!"); @@ -242,11 +226,12 @@ static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) { static inline bool DoFunctionInlining(BasicBlock *BB) { for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { - if (CallInst *CI = dyn_cast<CallInst>(*I)) { + if (CallInst *CI = dyn_cast<CallInst>(&*I)) { // Check to see if we should inline this function Function *F = CI->getCalledFunction(); - if (F && ShouldInlineFunction(CI, F)) - return InlineFunction(I); + if (F && ShouldInlineFunction(CI, F)) { + return InlineFunction(CI); + } } } return false; @@ -255,16 +240,14 @@ static inline bool DoFunctionInlining(BasicBlock *BB) { // doFunctionInlining - Use a heuristic based approach to inline functions that // seem to look good. // -static bool doFunctionInlining(Function *F) { +static bool doFunctionInlining(Function &F) { bool Changed = false; // Loop through now and inline instructions a basic block at a time... - for (Function::iterator I = F->begin(); I != F->end(); ) - if (DoFunctionInlining(*I)) { + for (Function::iterator I = F.begin(); I != F.end(); ) + if (DoFunctionInlining(I)) { ++NumInlined; Changed = true; - // Iterator is now invalidated by new basic blocks inserted - I = F->begin(); } else { ++I; } @@ -275,7 +258,7 @@ static bool doFunctionInlining(Function *F) { namespace { struct FunctionInlining : public FunctionPass { const char *getPassName() const { return "Function Inlining"; } - virtual bool runOnFunction(Function *F) { + virtual bool runOnFunction(Function &F) { return doFunctionInlining(F); } }; diff --git a/lib/Transforms/IPO/RaiseAllocations.cpp b/lib/Transforms/IPO/RaiseAllocations.cpp index 5dc1254..42e1a28 100644 --- a/lib/Transforms/IPO/RaiseAllocations.cpp +++ b/lib/Transforms/IPO/RaiseAllocations.cpp @@ -33,12 +33,12 @@ public: // doPassInitialization - For the raise allocations pass, this finds a // declaration for malloc and free if they exist. // - bool doInitialization(Module *M); + bool doInitialization(Module &M); // runOnBasicBlock - This method does the actual work of converting // instructions over, assuming that the pass has already been initialized. // - bool runOnBasicBlock(BasicBlock *BB); + bool runOnBasicBlock(BasicBlock &BB); }; } // end anonymous namespace @@ -50,7 +50,7 @@ Pass *createRaiseAllocationsPass() { } -bool RaiseAllocations::doInitialization(Module *M) { +bool RaiseAllocations::doInitialization(Module &M) { // If the module has a symbol table, they might be referring to the malloc // and free functions. If this is the case, grab the method pointers that // the module is using. @@ -68,22 +68,22 @@ bool RaiseAllocations::doInitialization(Module *M) { std::vector<const Type*>(1, PointerType::get(Type::SByteTy)), false); - MallocFunc = M->getFunction("malloc", MallocType); - FreeFunc = M->getFunction("free" , FreeType); + MallocFunc = M.getFunction("malloc", MallocType); + FreeFunc = M.getFunction("free" , FreeType); // Check to see if the prototype is missing, giving us sbyte*(...) * malloc // This handles the common declaration of: 'char *malloc();' if (MallocFunc == 0) { MallocType = FunctionType::get(PointerType::get(Type::SByteTy), std::vector<const Type*>(), true); - MallocFunc = M->getFunction("malloc", MallocType); + MallocFunc = M.getFunction("malloc", MallocType); } // Check to see if the prototype was forgotten, giving us void (...) * free // This handles the common forward declaration of: 'void free();' if (FreeFunc == 0) { FreeType = FunctionType::get(Type::VoidTy, std::vector<const Type*>(),true); - FreeFunc = M->getFunction("free", FreeType); + FreeFunc = M.getFunction("free", FreeType); } @@ -95,12 +95,12 @@ bool RaiseAllocations::doInitialization(Module *M) { // runOnBasicBlock - Process a basic block, fixing it up... // -bool RaiseAllocations::runOnBasicBlock(BasicBlock *BB) { +bool RaiseAllocations::runOnBasicBlock(BasicBlock &BB) { bool Changed = false; - BasicBlock::InstListType &BIL = BB->getInstList(); + BasicBlock::InstListType &BIL = BB.getInstList(); - for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { - Instruction *I = *BI; + for (BasicBlock::iterator BI = BB.begin(); BI != BB.end();) { + Instruction *I = BI; if (CallInst *CI = dyn_cast<CallInst>(I)) { if (CI->getCalledValue() == MallocFunc) { // Replace call to malloc? @@ -111,7 +111,7 @@ bool RaiseAllocations::runOnBasicBlock(BasicBlock *BB) { // source size. if (Source->getType() != Type::UIntTy) { CastInst *New = new CastInst(Source, Type::UIntTy, "MallocAmtCast"); - BI = BIL.insert(BI, New)+1; + BI = ++BIL.insert(BI, New); Source = New; } @@ -132,7 +132,7 @@ bool RaiseAllocations::runOnBasicBlock(BasicBlock *BB) { if (!isa<PointerType>(Source->getType())) { CastInst *New = new CastInst(Source, PointerType::get(Type::SByteTy), "FreePtrCast"); - BI = BIL.insert(BI, New)+1; + BI = ++BIL.insert(BI, New); Source = New; } diff --git a/lib/Transforms/Instrumentation/TraceValues.cpp b/lib/Transforms/Instrumentation/TraceValues.cpp index 079edce..92aff12 100644 --- a/lib/Transforms/Instrumentation/TraceValues.cpp +++ b/lib/Transforms/Instrumentation/TraceValues.cpp @@ -49,7 +49,7 @@ namespace { struct ExternalFuncs { Function *PrintfFunc, *HashPtrFunc, *ReleasePtrFunc; Function *RecordPtrFunc, *PushOnEntryFunc, *ReleaseOnReturnFunc; - void doInitialization(Module *M); // Add prototypes for external functions + void doInitialization(Module &M); // Add prototypes for external functions }; class InsertTraceCode : public FunctionPass { @@ -64,7 +64,7 @@ namespace { // Add a prototype for runtime functions not already in the program. // - bool doInitialization(Module *M); + bool doInitialization(Module &M); //-------------------------------------------------------------------------- // Function InsertCodeToTraceValues @@ -77,8 +77,8 @@ namespace { // runOnFunction - This method does the work. // - bool runOnFunction(Function *F) { - return doit(F, TraceBasicBlockExits, TraceFunctionExits, externalFuncs); + bool runOnFunction(Function &F) { + return doit(&F, TraceBasicBlockExits, TraceFunctionExits, externalFuncs); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { @@ -98,36 +98,36 @@ Pass *createTraceValuesPassForBasicBlocks() { // Trace BB's and functions // Add a prototype for external functions used by the tracing code. // -void ExternalFuncs::doInitialization(Module *M) { +void ExternalFuncs::doInitialization(Module &M) { const Type *SBP = PointerType::get(Type::SByteTy); const FunctionType *MTy = FunctionType::get(Type::IntTy, vector<const Type*>(1, SBP), true); - PrintfFunc = M->getOrInsertFunction("printf", MTy); + PrintfFunc = M.getOrInsertFunction("printf", MTy); // uint (sbyte*) const FunctionType *hashFuncTy = FunctionType::get(Type::UIntTy, vector<const Type*>(1, SBP), false); - HashPtrFunc = M->getOrInsertFunction("HashPointerToSeqNum", hashFuncTy); + HashPtrFunc = M.getOrInsertFunction("HashPointerToSeqNum", hashFuncTy); // void (sbyte*) const FunctionType *voidSBPFuncTy = FunctionType::get(Type::VoidTy, vector<const Type*>(1, SBP), false); - ReleasePtrFunc =M->getOrInsertFunction("ReleasePointerSeqNum", voidSBPFuncTy); - RecordPtrFunc = M->getOrInsertFunction("RecordPointer", voidSBPFuncTy); + ReleasePtrFunc = M.getOrInsertFunction("ReleasePointerSeqNum", voidSBPFuncTy); + RecordPtrFunc = M.getOrInsertFunction("RecordPointer", voidSBPFuncTy); const FunctionType *voidvoidFuncTy = FunctionType::get(Type::VoidTy, vector<const Type*>(), false); - PushOnEntryFunc = M->getOrInsertFunction("PushPointerSet", voidvoidFuncTy); - ReleaseOnReturnFunc = M->getOrInsertFunction("ReleasePointersPopSet", + PushOnEntryFunc = M.getOrInsertFunction("PushPointerSet", voidvoidFuncTy); + ReleaseOnReturnFunc = M.getOrInsertFunction("ReleasePointersPopSet", voidvoidFuncTy); } // Add a prototype for external functions used by the tracing code. // -bool InsertTraceCode::doInitialization(Module *M) { +bool InsertTraceCode::doInitialization(Module &M) { externalFuncs.doInitialization(M); return false; } @@ -214,20 +214,20 @@ static void InsertPrintInst(Value *V,BasicBlock *BB, BasicBlock::iterator &BBI, new GetElementPtrInst(fmtVal, vector<Value*>(2,ConstantUInt::get(Type::UIntTy, 0)), "trstr"); - BBI = BB->getInstList().insert(BBI, GEP)+1; + BBI = ++BB->getInstList().insert(BBI, GEP); // Insert a call to the hash function if this is a pointer value if (V && isa<PointerType>(V->getType()) && !DisablePtrHashing) { const Type *SBP = PointerType::get(Type::SByteTy); if (V->getType() != SBP) { // Cast pointer to be sbyte* Instruction *I = new CastInst(V, SBP, "Hash_cast"); - BBI = BB->getInstList().insert(BBI, I)+1; + BBI = ++BB->getInstList().insert(BBI, I); V = I; } vector<Value*> HashArgs(1, V); V = new CallInst(HashPtrToSeqNum, HashArgs, "ptrSeqNum"); - BBI = BB->getInstList().insert(BBI, cast<Instruction>(V))+1; + BBI = ++BB->getInstList().insert(BBI, cast<Instruction>(V)); } // Insert the first print instruction to print the string flag: @@ -235,7 +235,7 @@ static void InsertPrintInst(Value *V,BasicBlock *BB, BasicBlock::iterator &BBI, PrintArgs.push_back(GEP); if (V) PrintArgs.push_back(V); Instruction *I = new CallInst(Printf, PrintArgs, "trace"); - BBI = BB->getInstList().insert(BBI, I)+1; + BBI = ++BB->getInstList().insert(BBI, I); } @@ -257,12 +257,12 @@ InsertReleaseInst(Value *V, BasicBlock *BB, const Type *SBP = PointerType::get(Type::SByteTy); if (V->getType() != SBP) { // Cast pointer to be sbyte* Instruction *I = new CastInst(V, SBP, "RPSN_cast"); - BBI = BB->getInstList().insert(BBI, I)+1; + BBI = ++BB->getInstList().insert(BBI, I); V = I; } vector<Value*> releaseArgs(1, V); Instruction *I = new CallInst(ReleasePtrFunc, releaseArgs); - BBI = BB->getInstList().insert(BBI, I)+1; + BBI = ++BB->getInstList().insert(BBI, I); } static void @@ -272,29 +272,29 @@ InsertRecordInst(Value *V, BasicBlock *BB, const Type *SBP = PointerType::get(Type::SByteTy); if (V->getType() != SBP) { // Cast pointer to be sbyte* Instruction *I = new CastInst(V, SBP, "RP_cast"); - BBI = BB->getInstList().insert(BBI, I)+1; + BBI = ++BB->getInstList().insert(BBI, I); V = I; } vector<Value*> releaseArgs(1, V); Instruction *I = new CallInst(RecordPtrFunc, releaseArgs); - BBI = BB->getInstList().insert(BBI, I)+1; + BBI = ++BB->getInstList().insert(BBI, I); } static void InsertPushOnEntryFunc(Function *M, Function* PushOnEntryFunc) { // Get an iterator to point to the insertion location - BasicBlock *BB = M->getEntryNode(); - BB->getInstList().insert(BB->begin(), new CallInst(PushOnEntryFunc, - vector<Value*> ())); + BasicBlock &BB = M->getEntryNode(); + BB.getInstList().insert(BB.begin(), new CallInst(PushOnEntryFunc, + vector<Value*>())); } static void InsertReleaseRecordedInst(BasicBlock *BB, Function* ReleaseOnReturnFunc) { - BasicBlock::iterator BBI = BB->end()-1; - BBI = 1 + BB->getInstList().insert(BBI, new CallInst(ReleaseOnReturnFunc, - vector<Value*>())); + BasicBlock::iterator BBI = BB->end()--; + BBI = ++BB->getInstList().insert(BBI, new CallInst(ReleaseOnReturnFunc, + vector<Value*>())); } // Look for alloca and free instructions. These are the ptrs to release. @@ -306,13 +306,13 @@ ReleasePtrSeqNumbers(BasicBlock *BB, ExternalFuncs& externalFuncs) { for (BasicBlock::iterator II=BB->begin(); II != BB->end(); ++II) { - if (FreeInst *FI = dyn_cast<FreeInst>(*II)) + if (FreeInst *FI = dyn_cast<FreeInst>(&*II)) InsertReleaseInst(FI->getOperand(0), BB,II,externalFuncs.ReleasePtrFunc); - else if (AllocaInst *AI = dyn_cast<AllocaInst>(*II)) + else if (AllocaInst *AI = dyn_cast<AllocaInst>(&*II)) { - BasicBlock::iterator nextI = II+1; + BasicBlock::iterator nextI = ++II; InsertRecordInst(AI, BB, nextI, externalFuncs.RecordPtrFunc); - II = nextI - 1; + II = --nextI; } } } @@ -335,8 +335,8 @@ static void TraceValuesAtBBExit(BasicBlock *BB, // Get an iterator to point to the insertion location, which is // just before the terminator instruction. // - BasicBlock::iterator InsertPos = BB->end()-1; - assert((*InsertPos)->isTerminator()); + BasicBlock::iterator InsertPos = BB->end()--; + assert(BB->back().isTerminator()); // If the terminator is a conditional branch, insert the trace code just // before the instruction that computes the branch condition (just to @@ -349,14 +349,9 @@ static void TraceValuesAtBBExit(BasicBlock *BB, if (!Branch->isUnconditional()) if (Instruction *I = dyn_cast<Instruction>(Branch->getCondition())) if (I->getParent() == BB) { - SetCC = I; - while (*InsertPos != SetCC) - --InsertPos; // Back up until we can insert before the setcc + InsertPos = SetCC = I; // Back up until we can insert before the setcc } - // Copy all of the instructions into a vector to avoid problems with Setcc - const vector<Instruction*> Insts(BB->begin(), InsertPos); - std::ostringstream OutStr; WriteAsOperand(OutStr, BB, false); InsertPrintInst(0, BB, InsertPos, "LEAVING BB:" + OutStr.str(), @@ -364,39 +359,35 @@ static void TraceValuesAtBBExit(BasicBlock *BB, // Insert a print instruction for each value. // - for (vector<Instruction*>::const_iterator II = Insts.begin(), - IE = Insts.end(); II != IE; ++II) { - Instruction *I = *II; - if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + for (BasicBlock::iterator II = BB->begin(), IE = InsertPos++; II != IE; ++II){ + if (StoreInst *SI = dyn_cast<StoreInst>(&*II)) { assert(valuesStoredInFunction && "Should not be printing a store instruction at function exit"); LoadInst *LI = new LoadInst(SI->getPointerOperand(), SI->copyIndices(), - "reload"); - InsertPos = BB->getInstList().insert(InsertPos, LI) + 1; + "reload."+SI->getPointerOperand()->getName()); + InsertPos = ++BB->getInstList().insert(InsertPos, LI); valuesStoredInFunction->push_back(LI); } - if (ShouldTraceValue(I)) - InsertVerbosePrintInst(I, BB, InsertPos, " ", Printf, HashPtrToSeqNum); + if (ShouldTraceValue(II)) + InsertVerbosePrintInst(II, BB, InsertPos, " ", Printf, HashPtrToSeqNum); } } static inline void InsertCodeToShowFunctionEntry(Function *M, Function *Printf, Function* HashPtrToSeqNum){ // Get an iterator to point to the insertion location - BasicBlock *BB = M->getEntryNode(); - BasicBlock::iterator BBI = BB->begin(); + BasicBlock &BB = M->getEntryNode(); + BasicBlock::iterator BBI = BB.begin(); std::ostringstream OutStr; WriteAsOperand(OutStr, M, true); - InsertPrintInst(0, BB, BBI, "ENTERING FUNCTION: " + OutStr.str(), + InsertPrintInst(0, &BB, BBI, "ENTERING FUNCTION: " + OutStr.str(), Printf, HashPtrToSeqNum); // Now print all the incoming arguments - const Function::ArgumentListType &argList = M->getArgumentList(); unsigned ArgNo = 0; - for (Function::ArgumentListType::const_iterator - I = argList.begin(), E = argList.end(); I != E; ++I, ++ArgNo) { - InsertVerbosePrintInst((Value*)*I, BB, BBI, + for (Function::aiterator I = M->abegin(), E = M->aend(); I != E; ++I,++ArgNo){ + InsertVerbosePrintInst(I, &BB, BBI, " Arg #" + utostr(ArgNo) + ": ", Printf, HashPtrToSeqNum); } @@ -407,8 +398,8 @@ static inline void InsertCodeToShowFunctionExit(BasicBlock *BB, Function *Printf, Function* HashPtrToSeqNum) { // Get an iterator to point to the insertion location - BasicBlock::iterator BBI = BB->end()-1; - ReturnInst *Ret = cast<ReturnInst>(*BBI); + BasicBlock::iterator BBI = BB->end()--; + ReturnInst &Ret = cast<ReturnInst>(BB->back()); std::ostringstream OutStr; WriteAsOperand(OutStr, BB->getParent(), true); @@ -417,7 +408,7 @@ static inline void InsertCodeToShowFunctionExit(BasicBlock *BB, // print the return value, if any if (BB->getParent()->getReturnType() != Type::VoidTy) - InsertPrintInst(Ret->getReturnValue(), BB, BBI, " Returning: ", + InsertPrintInst(Ret.getReturnValue(), BB, BBI, " Returning: ", Printf, HashPtrToSeqNum); } @@ -443,8 +434,7 @@ bool InsertTraceCode::doit(Function *M, bool traceBasicBlockExits, if (!DisablePtrHashing) InsertPushOnEntryFunc(M, externalFuncs.PushOnEntryFunc); - for (Function::iterator BI = M->begin(); BI != M->end(); ++BI) { - BasicBlock *BB = *BI; + for (Function::iterator BB = M->begin(); BB != M->end(); ++BB) { if (isa<ReturnInst>(BB->getTerminator())) exitBlocks.push_back(BB); // record this as an exit block diff --git a/lib/Transforms/LevelRaise.cpp b/lib/Transforms/LevelRaise.cpp index b0bae97..c310034 100644 --- a/lib/Transforms/LevelRaise.cpp +++ b/lib/Transforms/LevelRaise.cpp @@ -58,13 +58,13 @@ static inline bool isReinterpretingCast(const CastInst *CI) { // static bool HandleCastToPointer(BasicBlock::iterator BI, const PointerType *DestPTy) { - CastInst *CI = cast<CastInst>(*BI); - if (CI->use_empty()) return false; + CastInst &CI = cast<CastInst>(*BI); + if (CI.use_empty()) return false; // Scan all of the uses, looking for any uses that are not add // instructions. If we have non-adds, do not make this transformation. // - for (Value::use_iterator I = CI->use_begin(), E = CI->use_end(); + for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) { if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*I)) { if (BO->getOpcode() != Instruction::Add) @@ -75,7 +75,7 @@ static bool HandleCastToPointer(BasicBlock::iterator BI, } std::vector<Value*> Indices; - Value *Src = CI->getOperand(0); + Value *Src = CI.getOperand(0); const Type *Result = ConvertableToGEP(DestPTy, Src, Indices, &BI); if (Result == 0) return false; // Not convertable... @@ -83,13 +83,13 @@ static bool HandleCastToPointer(BasicBlock::iterator BI, // If we have a getelementptr capability... transform all of the // add instruction uses into getelementptr's. - while (!CI->use_empty()) { - BinaryOperator *I = cast<BinaryOperator>(*CI->use_begin()); + while (!CI.use_empty()) { + BinaryOperator *I = cast<BinaryOperator>(*CI.use_begin()); assert(I->getOpcode() == Instruction::Add && I->getNumOperands() == 2 && "Use is not a valid add instruction!"); // Get the value added to the cast result pointer... - Value *OtherPtr = I->getOperand((I->getOperand(0) == CI) ? 1 : 0); + Value *OtherPtr = I->getOperand((I->getOperand(0) == &CI) ? 1 : 0); Instruction *GEP = new GetElementPtrInst(OtherPtr, Indices, I->getName()); PRINT_PEEPHOLE1("cast-add-to-gep:i", I); @@ -102,16 +102,14 @@ static bool HandleCastToPointer(BasicBlock::iterator BI, // add instruction type, insert a cast now. // - // Insert the GEP instruction before the old add instruction... and get an - // iterator to point at the add instruction... - BasicBlock::iterator GEPI = InsertInstBeforeInst(GEP, I)+1; + // Insert the GEP instruction before the old add instruction... + I->getParent()->getInstList().insert(I, GEP); PRINT_PEEPHOLE1("cast-add-to-gep:o", GEP); - CastInst *CI = new CastInst(GEP, I->getType()); - GEP = CI; + GEP = new CastInst(GEP, I->getType()); // Replace the old add instruction with the shiny new GEP inst - ReplaceInstWithInst(I->getParent()->getInstList(), GEPI, GEP); + ReplaceInstWithInst(I, GEP); } PRINT_PEEPHOLE1("cast-add-to-gep:o", GEP); @@ -160,7 +158,7 @@ static bool PeepholeOptimizeAddCast(BasicBlock *BB, BasicBlock::iterator &BI, GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Indices, AddOp2->getName()); - BI = BB->getInstList().insert(BI, GEP)+1; + BI = ++BB->getInstList().insert(BI, GEP); Instruction *NCI = new CastInst(GEP, AddOp1->getType()); ReplaceInstWithInst(BB->getInstList(), BI, NCI); @@ -169,7 +167,7 @@ static bool PeepholeOptimizeAddCast(BasicBlock *BB, BasicBlock::iterator &BI, } static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { - Instruction *I = *BI; + Instruction *I = BI; if (CastInst *CI = dyn_cast<CastInst>(I)) { Value *Src = CI->getOperand(0); @@ -193,7 +191,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // DCE the instruction now, to avoid having the iterative version of DCE // have to worry about it. // - delete BB->getInstList().remove(BI); + BI = BB->getInstList().erase(BI); ++NumCastOfCast; return true; @@ -326,7 +324,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { GetElementPtrInst *GEP = new GetElementPtrInst(Src, Indices, CI->getName()); CI->setName(""); - BI = BB->getInstList().insert(BI, GEP)+1; + BI = ++BB->getInstList().insert(BI, GEP); // Make the old cast instruction reference the new GEP instead of // the old src value. @@ -359,7 +357,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // if (CastInst *CI = dyn_cast<CastInst>(Pointer)) if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType - if (PointerType *CSPT = dyn_cast<PointerType>(CastSrc->getType())) + if (const PointerType *CSPT = dyn_cast<PointerType>(CastSrc->getType())) // convertable types? if (Val->getType()->isLosslesslyConvertableTo(CSPT->getElementType()) && !SI->hasIndices()) { // No subscripts yet! @@ -369,7 +367,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { CastInst *NCI = new CastInst(Val, CSPT->getElementType(), CI->getName()); CI->setName(""); - BI = BB->getInstList().insert(BI, NCI)+1; + BI = ++BB->getInstList().insert(BI, NCI); // Replace the old store with a new one! ReplaceInstWithInst(BB->getInstList(), BI, @@ -399,7 +397,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // if (CastInst *CI = dyn_cast<CastInst>(Pointer)) if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType - if (PointerType *CSPT = dyn_cast<PointerType>(CastSrc->getType())) + if (const PointerType *CSPT = dyn_cast<PointerType>(CastSrc->getType())) // convertable types? if (PtrElType->isLosslesslyConvertableTo(CSPT->getElementType()) && !LI->hasIndices()) { // No subscripts yet! @@ -410,7 +408,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // Insert the new T cast instruction... stealing old T's name CastInst *NCI = new CastInst(NewLI, LI->getType(), CI->getName()); - BI = BB->getInstList().insert(BI, NewLI)+1; + BI = ++BB->getInstList().insert(BI, NewLI); // Replace the old store with a new one! ReplaceInstWithInst(BB->getInstList(), BI, NCI); @@ -435,24 +433,22 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { -static bool DoRaisePass(Function *F) { +static bool DoRaisePass(Function &F) { bool Changed = false; - for (Function::iterator MI = F->begin(), ME = F->end(); MI != ME; ++MI) { - BasicBlock *BB = *MI; - BasicBlock::InstListType &BIL = BB->getInstList(); - + for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { DEBUG(cerr << "Processing: " << *BI); if (dceInstruction(BI) || doConstantPropogation(BI)) { Changed = true; ++NumDCEorCP; DEBUG(cerr << "***\t\t^^-- DeadCode Elinated!\n"); - } else if (PeepholeOptimize(BB, BI)) + } else if (PeepholeOptimize(BB, BI)) { Changed = true; - else + } else { ++BI; + } } - } + return Changed; } @@ -460,8 +456,8 @@ static bool DoRaisePass(Function *F) { // RaisePointerReferences::doit - Raise a function representation to a higher // level. // -static bool doRPR(Function *F) { - DEBUG(cerr << "\n\n\nStarting to work on Function '" << F->getName()<< "'\n"); +static bool doRPR(Function &F) { + DEBUG(cerr << "\n\n\nStarting to work on Function '" << F.getName() << "'\n"); // Insert casts for all incoming pointer pointer values that are treated as // arrays... @@ -486,7 +482,7 @@ namespace { struct RaisePointerReferences : public FunctionPass { const char *getPassName() const { return "Raise Pointer References"; } - virtual bool runOnFunction(Function *F) { return doRPR(F); } + virtual bool runOnFunction(Function &F) { return doRPR(F); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp index 862ec5a..237c458 100644 --- a/lib/Transforms/Scalar/ADCE.cpp +++ b/lib/Transforms/Scalar/ADCE.cpp @@ -46,8 +46,8 @@ public: // Execute the Aggressive Dead Code Elimination Algorithm // - virtual bool runOnFunction(Function *F) { - Func = F; + virtual bool runOnFunction(Function &F) { + Func = &F; bool Changed = doADCE(); assert(WorkList.empty()); LiveSet.clear(); @@ -126,14 +126,12 @@ bool ADCE::doADCE() { BBI != BBE; ++BBI) { BasicBlock *BB = *BBI; for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { - Instruction *I = *II; - - if (I->hasSideEffects() || I->getOpcode() == Instruction::Ret) { - markInstructionLive(I); + if (II->hasSideEffects() || II->getOpcode() == Instruction::Ret) { + markInstructionLive(II); ++II; // Increment the inst iterator if the inst wasn't deleted - } else if (isInstructionTriviallyDead(I)) { + } else if (isInstructionTriviallyDead(II)) { // Remove the instruction from it's basic block... - delete BB->getInstList().remove(II); + II = BB->getInstList().erase(II); ++NumInstRemoved; MadeChanges = true; } else { @@ -185,9 +183,8 @@ bool ADCE::doADCE() { if (DebugFlag) { cerr << "Current Function: X = Live\n"; for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) - for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); - BI != BE; ++BI) { - if (LiveSet.count(*BI)) cerr << "X "; + for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ + if (LiveSet.count(BI)) cerr << "X "; cerr << *BI; } } @@ -201,8 +198,8 @@ bool ADCE::doADCE() { if (AliveBlocks.size() != Func->size()) { // Insert a new entry node to eliminate the entry node as a special case. BasicBlock *NewEntry = new BasicBlock(); - NewEntry->getInstList().push_back(new BranchInst(Func->front())); - Func->getBasicBlocks().push_front(NewEntry); + NewEntry->getInstList().push_back(new BranchInst(&Func->front())); + Func->getBasicBlockList().push_front(NewEntry); AliveBlocks.insert(NewEntry); // This block is always alive! // Loop over all of the alive blocks in the function. If any successor @@ -211,8 +208,8 @@ bool ADCE::doADCE() { // the block to reflect this. // for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) - if (AliveBlocks.count(*I)) { - BasicBlock *BB = *I; + if (AliveBlocks.count(I)) { + BasicBlock *BB = I; TerminatorInst *TI = BB->getTerminator(); // Loop over all of the successors, looking for ones that are not alive @@ -242,7 +239,7 @@ bool ADCE::doADCE() { // should be identical to the incoming values for LastDead. // for (BasicBlock::iterator II = NextAlive->begin(); - PHINode *PN = dyn_cast<PHINode>(*II); ++II) { + PHINode *PN = dyn_cast<PHINode>(&*II); ++II) { // Get the incoming value for LastDead... int OldIdx = PN->getBasicBlockIndex(LastDead); assert(OldIdx != -1 && "LastDead is not a pred of NextAlive!"); @@ -258,17 +255,16 @@ bool ADCE::doADCE() { // sweep over the program can safely delete dead instructions without // other dead instructions still refering to them. // - for (BasicBlock::iterator I = BB->begin(), E = BB->end()-1; I != E; ++I) - if (!LiveSet.count(*I)) // Is this instruction alive? - (*I)->dropAllReferences(); // Nope, drop references... + for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I) + if (!LiveSet.count(I)) // Is this instruction alive? + I->dropAllReferences(); // Nope, drop references... } } // Loop over all of the basic blocks in the function, dropping references of // the dead basic blocks // - for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { - BasicBlock *BB = *I; + for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) { if (!AliveBlocks.count(BB)) { // Remove all outgoing edges from this basic block and convert the // terminator into a return instruction. @@ -283,7 +279,7 @@ bool ADCE::doADCE() { } // Delete the old terminator instruction... - delete BB->getInstList().remove(BB->end()-1); + BB->getInstList().pop_back(); const Type *RetTy = Func->getReturnType(); Instruction *New = new ReturnInst(RetTy != Type::VoidTy ? Constant::getNullValue(RetTy) : 0); @@ -302,14 +298,13 @@ bool ADCE::doADCE() { // instructions from alive blocks. // for (Function::iterator BI = Func->begin(); BI != Func->end(); ) - if (!AliveBlocks.count(*BI)) - delete Func->getBasicBlocks().remove(BI); + if (!AliveBlocks.count(BI)) + BI = Func->getBasicBlockList().erase(BI); else { - BasicBlock *BB = *BI; - for (BasicBlock::iterator II = BB->begin(); II != BB->end()-1; ) - if (!LiveSet.count(*II)) { // Is this instruction alive? + for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); ) + if (!LiveSet.count(II)) { // Is this instruction alive? // Nope... remove the instruction from it's basic block... - delete BB->getInstList().remove(II); + II = BI->getInstList().erase(II); ++NumInstRemoved; MadeChanges = true; } else { diff --git a/lib/Transforms/Scalar/ConstantProp.cpp b/lib/Transforms/Scalar/ConstantProp.cpp index 720266c..51bd6cb 100644 --- a/lib/Transforms/Scalar/ConstantProp.cpp +++ b/lib/Transforms/Scalar/ConstantProp.cpp @@ -26,7 +26,7 @@ namespace { struct ConstantPropogation : public FunctionPass { const char *getPassName() const { return "Simple Constant Propogation"; } - bool runOnFunction(Function *F); + bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); @@ -39,7 +39,7 @@ Pass *createConstantPropogationPass() { } -bool ConstantPropogation::runOnFunction(Function *F) { +bool ConstantPropogation::runOnFunction(Function &F) { // Initialize the worklist to all of the instructions ready to process... std::set<Instruction*> WorkList(inst_begin(F), inst_end(F)); bool Changed = false; diff --git a/lib/Transforms/Scalar/DCE.cpp b/lib/Transforms/Scalar/DCE.cpp index fa2392f..1f5def6 100644 --- a/lib/Transforms/Scalar/DCE.cpp +++ b/lib/Transforms/Scalar/DCE.cpp @@ -28,10 +28,9 @@ namespace { struct DeadInstElimination : public BasicBlockPass { const char *getPassName() const { return "Dead Instruction Elimination"; } - virtual bool runOnBasicBlock(BasicBlock *BB) { - BasicBlock::InstListType &Vals = BB->getInstList(); + virtual bool runOnBasicBlock(BasicBlock &BB) { bool Changed = false; - for (BasicBlock::iterator DI = Vals.begin(); DI != Vals.end(); ) + for (BasicBlock::iterator DI = BB.begin(); DI != BB.end(); ) if (dceInstruction(DI)) { Changed = true; ++DIEEliminated; @@ -60,7 +59,7 @@ namespace { struct DCE : public FunctionPass { const char *getPassName() const { return "Dead Code Elimination"; } - virtual bool runOnFunction(Function *F); + virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); @@ -68,7 +67,7 @@ namespace { }; } -bool DCE::runOnFunction(Function *F) { +bool DCE::runOnFunction(Function &F) { // Start out with all of the instructions in the worklist... std::vector<Instruction*> WorkList(inst_begin(F), inst_end(F)); std::set<Instruction*> DeadInsts; @@ -103,16 +102,14 @@ bool DCE::runOnFunction(Function *F) { if (DeadInsts.empty()) return false; // Otherwise, loop over the program, removing and deleting the instructions... - for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { - BasicBlock::InstListType &BBIL = (*I)->getInstList(); - for (BasicBlock::iterator BI = BBIL.begin(); BI != BBIL.end(); ) - if (DeadInsts.count(*BI)) { // Is this instruction dead? - delete BBIL.remove(BI); // Yup, remove and delete inst + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + for (BasicBlock::iterator BI = I->begin(); BI != I->end(); ) + if (DeadInsts.count(BI)) { // Is this instruction dead? + BI = I->getInstList().erase(BI); // Yup, remove and delete inst ++DCEEliminated; } else { // This instruction is not dead ++BI; // Continue on to the next one... } - } return true; } diff --git a/lib/Transforms/Scalar/DecomposeMultiDimRefs.cpp b/lib/Transforms/Scalar/DecomposeMultiDimRefs.cpp index 90301f8..ab6059a 100644 --- a/lib/Transforms/Scalar/DecomposeMultiDimRefs.cpp +++ b/lib/Transforms/Scalar/DecomposeMultiDimRefs.cpp @@ -23,7 +23,7 @@ namespace { struct DecomposePass : public BasicBlockPass { const char *getPassName() const { return "Decompose Subscripting Exps"; } - virtual bool runOnBasicBlock(BasicBlock *BB); + virtual bool runOnBasicBlock(BasicBlock &BB); private: static void decomposeArrayRef(BasicBlock::iterator &BBI); @@ -38,10 +38,10 @@ Pass *createDecomposeMultiDimRefsPass() { // runOnBasicBlock - Entry point for array or structure references with multiple // indices. // -bool DecomposePass::runOnBasicBlock(BasicBlock *BB) { +bool DecomposePass::runOnBasicBlock(BasicBlock &BB) { bool Changed = false; - for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ) { - if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*II)) { + for (BasicBlock::iterator II = BB.begin(); II != BB.end(); ) { + if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(&*II)) { if (MAI->getNumOperands() > MAI->getFirstIndexOperandNumber()+1) { decomposeArrayRef(II); Changed = true; @@ -67,9 +67,9 @@ bool DecomposePass::runOnBasicBlock(BasicBlock *BB) { // If any index is (uint) 0, we omit the getElementPtr instruction. // void DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI) { - MemAccessInst *MAI = cast<MemAccessInst>(*BBI); - BasicBlock *BB = MAI->getParent(); - Value *LastPtr = MAI->getPointerOperand(); + MemAccessInst &MAI = cast<MemAccessInst>(*BBI); + BasicBlock *BB = MAI.getParent(); + Value *LastPtr = MAI.getPointerOperand(); // Remove the instruction from the stream BB->getInstList().remove(BBI); @@ -78,22 +78,22 @@ void DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI) { // Process each index except the last one. // - User::const_op_iterator OI = MAI->idx_begin(), OE = MAI->idx_end(); + User::const_op_iterator OI = MAI.idx_begin(), OE = MAI.idx_end(); for (; OI+1 != OE; ++OI) { assert(isa<PointerType>(LastPtr->getType())); // Check for a zero index. This will need a cast instead of // a getElementPtr, or it may need neither. bool indexIsZero = isa<Constant>(*OI) && - cast<Constant>(*OI)->isNullValue() && - (*OI)->getType() == Type::UIntTy; + cast<Constant>(OI->get())->isNullValue() && + OI->get()->getType() == Type::UIntTy; // Extract the first index. If the ptr is a pointer to a structure // and the next index is a structure offset (i.e., not an array offset), // we need to include an initial [0] to index into the pointer. // vector<Value*> Indices; - PointerType *PtrTy = cast<PointerType>(LastPtr->getType()); + const PointerType *PtrTy = cast<PointerType>(LastPtr->getType()); if (isa<StructType>(PtrTy->getElementType()) && !PtrTy->indexValid(*OI)) Indices.push_back(Constant::getNullValue(Type::UIntTy)); @@ -131,7 +131,7 @@ void DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI) { // // Now create a new instruction to replace the original one // - PointerType *PtrTy = cast<PointerType>(LastPtr->getType()); + const PointerType *PtrTy = cast<PointerType>(LastPtr->getType()); // First, get the final index vector. As above, we may need an initial [0]. vector<Value*> Indices; @@ -142,15 +142,15 @@ void DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI) { Indices.push_back(*OI); Instruction *NewI = 0; - switch(MAI->getOpcode()) { + switch(MAI.getOpcode()) { case Instruction::Load: - NewI = new LoadInst(LastPtr, Indices, MAI->getName()); + NewI = new LoadInst(LastPtr, Indices, MAI.getName()); break; case Instruction::Store: - NewI = new StoreInst(MAI->getOperand(0), LastPtr, Indices); + NewI = new StoreInst(MAI.getOperand(0), LastPtr, Indices); break; case Instruction::GetElementPtr: - NewI = new GetElementPtrInst(LastPtr, Indices, MAI->getName()); + NewI = new GetElementPtrInst(LastPtr, Indices, MAI.getName()); break; default: assert(0 && "Unrecognized memory access instruction"); @@ -158,14 +158,15 @@ void DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI) { NewInsts.push_back(NewI); // Replace all uses of the old instruction with the new - MAI->replaceAllUsesWith(NewI); + MAI.replaceAllUsesWith(NewI); // Now delete the old instruction... - delete MAI; + delete &MAI; // Insert all of the new instructions... - BBI = BB->getInstList().insert(BBI, NewInsts.begin(), NewInsts.end()); + BB->getInstList().insert(BBI, NewInsts.begin(), NewInsts.end()); // Advance the iterator to the instruction following the one just inserted... - BBI += NewInsts.size(); + BBI = NewInsts.back(); + ++BBI; } diff --git a/lib/Transforms/Scalar/GCSE.cpp b/lib/Transforms/Scalar/GCSE.cpp index 2792550..850e65a 100644 --- a/lib/Transforms/Scalar/GCSE.cpp +++ b/lib/Transforms/Scalar/GCSE.cpp @@ -43,21 +43,21 @@ namespace { return "Global Common Subexpression Elimination"; } - virtual bool runOnFunction(Function *F); + virtual bool runOnFunction(Function &F); // Visitation methods, these are invoked depending on the type of // instruction being checked. They should return true if a common // subexpression was folded. // - bool visitUnaryOperator(Instruction *I); - bool visitBinaryOperator(Instruction *I); - bool visitGetElementPtrInst(GetElementPtrInst *I); - bool visitCastInst(CastInst *I){return visitUnaryOperator((Instruction*)I);} - bool visitShiftInst(ShiftInst *I) { - return visitBinaryOperator((Instruction*)I); + bool visitUnaryOperator(Instruction &I); + bool visitBinaryOperator(Instruction &I); + bool visitGetElementPtrInst(GetElementPtrInst &I); + bool visitCastInst(CastInst &I){return visitUnaryOperator((Instruction&)I);} + bool visitShiftInst(ShiftInst &I) { + return visitBinaryOperator((Instruction&)I); } - bool visitLoadInst(LoadInst *LI); - bool visitInstruction(Instruction *) { return false; } + bool visitLoadInst(LoadInst &LI); + bool visitInstruction(Instruction &) { return false; } private: void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI); @@ -93,7 +93,7 @@ Pass *createGCSEPass() { return new GCSE(); } // GCSE::runOnFunction - This is the main transformation entry point for a // function. // -bool GCSE::runOnFunction(Function *F) { +bool GCSE::runOnFunction(Function &F) { bool Changed = false; DomSetInfo = &getAnalysis<DominatorSet>(); @@ -110,7 +110,7 @@ bool GCSE::runOnFunction(Function *F) { // program. If so, eliminate them! // while (!WorkList.empty()) { - Instruction *I = *WorkList.begin(); // Get an instruction from the worklist + Instruction &I = **WorkList.begin(); // Get an instruction from the worklist WorkList.erase(WorkList.begin()); // Visit the instruction, dispatching to the correct visit function based on @@ -131,7 +131,7 @@ bool GCSE::runOnFunction(Function *F) { // uses of the instruction use First now instead. // void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { - Instruction *Second = *SI; + Instruction &Second = *SI; //cerr << "DEL " << (void*)Second << Second; @@ -139,15 +139,15 @@ void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { WorkList.insert(First); // Add all uses of the second instruction to the worklist - for (Value::use_iterator UI = Second->use_begin(), UE = Second->use_end(); + for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end(); UI != UE; ++UI) WorkList.insert(cast<Instruction>(*UI)); // Make all users of 'Second' now use 'First' - Second->replaceAllUsesWith(First); + Second.replaceAllUsesWith(First); // Erase the second instruction from the program - delete Second->getParent()->getInstList().remove(SI); + Second.getParent()->getInstList().erase(SI); } // CommonSubExpressionFound - The two instruction I & Other have been found to @@ -170,16 +170,15 @@ void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { // // Scan the basic block looking for the "first" instruction BasicBlock::iterator BI = BB1->begin(); - while (*BI != I && *BI != Other) { + while (&*BI != I && &*BI != Other) { ++BI; assert(BI != BB1->end() && "Instructions not found in parent BB!"); } // Keep track of which instructions occurred first & second - Instruction *First = *BI; + Instruction *First = BI; Instruction *Second = I != First ? I : Other; // Get iterator to second inst - BI = find(BI, BB1->end(), Second); - assert(BI != BB1->end() && "Second instruction not found in parent block!"); + BI = Second; // Destroy Second, using First instead. ReplaceInstWithInst(First, BI); @@ -188,13 +187,9 @@ void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { // dominates the other instruction, we can simply use it // } else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other? - BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); - assert(BI != BB2->end() && "Other not in parent basic block!"); - ReplaceInstWithInst(I, BI); + ReplaceInstWithInst(I, Other); } else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I? - BasicBlock::iterator BI = find(BB1->begin(), BB1->end(), I); - assert(BI != BB1->end() && "I not in parent basic block!"); - ReplaceInstWithInst(Other, BI); + ReplaceInstWithInst(Other, I); } else { // Handle the most general case now. In this case, neither I dom Other nor // Other dom I. Because we are in SSA form, we are guaranteed that the @@ -215,12 +210,10 @@ void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { // Rip 'I' out of BB1, and move it to the end of SharedDom. BB1->getInstList().remove(I); - SharedDom->getInstList().insert(SharedDom->end()-1, I); + SharedDom->getInstList().insert(--SharedDom->end(), I); // Eliminate 'Other' now. - BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); - assert(BI != BB2->end() && "I not in parent basic block!"); - ReplaceInstWithInst(I, BI); + ReplaceInstWithInst(I, Other); } } @@ -231,25 +224,25 @@ void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { // //===----------------------------------------------------------------------===// -bool GCSE::visitUnaryOperator(Instruction *I) { - Value *Op = I->getOperand(0); - Function *F = I->getParent()->getParent(); +bool GCSE::visitUnaryOperator(Instruction &I) { + Value *Op = I.getOperand(0); + Function *F = I.getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (Instruction *Other = dyn_cast<Instruction>(*UI)) // Check to see if this new binary operator is not I, but same operand... - if (Other != I && Other->getOpcode() == I->getOpcode() && + if (Other != &I && Other->getOpcode() == I.getOpcode() && Other->getOperand(0) == Op && // Is the operand the same? // Is it embeded in the same function? (This could be false if LHS // is a constant or global!) Other->getParent()->getParent() == F && // Check that the types are the same, since this code handles casts... - Other->getType() == I->getType()) { + Other->getType() == I.getType()) { // These instructions are identical. Handle the situation. - CommonSubExpressionFound(I, Other); + CommonSubExpressionFound(&I, Other); return true; // One instruction eliminated! } @@ -259,45 +252,45 @@ bool GCSE::visitUnaryOperator(Instruction *I) { // isIdenticalBinaryInst - Return true if the two binary instructions are // identical. // -static inline bool isIdenticalBinaryInst(const Instruction *I1, +static inline bool isIdenticalBinaryInst(const Instruction &I1, const Instruction *I2) { // Is it embeded in the same function? (This could be false if LHS // is a constant or global!) - if (I1->getOpcode() != I2->getOpcode() || - I1->getParent()->getParent() != I2->getParent()->getParent()) + if (I1.getOpcode() != I2->getOpcode() || + I1.getParent()->getParent() != I2->getParent()->getParent()) return false; // They are identical if both operands are the same! - if (I1->getOperand(0) == I2->getOperand(0) && - I1->getOperand(1) == I2->getOperand(1)) + if (I1.getOperand(0) == I2->getOperand(0) && + I1.getOperand(1) == I2->getOperand(1)) return true; // If the instruction is commutative and associative, the instruction can // match if the operands are swapped! // - if ((I1->getOperand(0) == I2->getOperand(1) && - I1->getOperand(1) == I2->getOperand(0)) && - (I1->getOpcode() == Instruction::Add || - I1->getOpcode() == Instruction::Mul || - I1->getOpcode() == Instruction::And || - I1->getOpcode() == Instruction::Or || - I1->getOpcode() == Instruction::Xor)) + if ((I1.getOperand(0) == I2->getOperand(1) && + I1.getOperand(1) == I2->getOperand(0)) && + (I1.getOpcode() == Instruction::Add || + I1.getOpcode() == Instruction::Mul || + I1.getOpcode() == Instruction::And || + I1.getOpcode() == Instruction::Or || + I1.getOpcode() == Instruction::Xor)) return true; return false; } -bool GCSE::visitBinaryOperator(Instruction *I) { - Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); - Function *F = I->getParent()->getParent(); +bool GCSE::visitBinaryOperator(Instruction &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + Function *F = I.getParent()->getParent(); for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end(); UI != UE; ++UI) if (Instruction *Other = dyn_cast<Instruction>(*UI)) // Check to see if this new binary operator is not I, but same operand... - if (Other != I && isIdenticalBinaryInst(I, Other)) { + if (Other != &I && isIdenticalBinaryInst(I, Other)) { // These instructions are identical. Handle the situation. - CommonSubExpressionFound(I, Other); + CommonSubExpressionFound(&I, Other); return true; // One instruction eliminated! } @@ -319,42 +312,42 @@ static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) { std::equal(I1->op_begin(), I1->op_end(), I2->op_begin()); } -bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) { - Value *Op = I->getOperand(0); - Function *F = I->getParent()->getParent(); +bool GCSE::visitGetElementPtrInst(GetElementPtrInst &I) { + Value *Op = I.getOperand(0); + Function *F = I.getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI)) // Check to see if this new getelementptr is not I, but same operand... - if (Other != I && IdenticalComplexInst(I, Other)) { + if (Other != &I && IdenticalComplexInst(&I, Other)) { // These instructions are identical. Handle the situation. - CommonSubExpressionFound(I, Other); + CommonSubExpressionFound(&I, Other); return true; // One instruction eliminated! } return false; } -bool GCSE::visitLoadInst(LoadInst *LI) { - Value *Op = LI->getOperand(0); - Function *F = LI->getParent()->getParent(); +bool GCSE::visitLoadInst(LoadInst &LI) { + Value *Op = LI.getOperand(0); + Function *F = LI.getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (LoadInst *Other = dyn_cast<LoadInst>(*UI)) // Check to see if this new load is not LI, but has the same operands... - if (Other != LI && IdenticalComplexInst(LI, Other) && - TryToRemoveALoad(LI, Other)) + if (Other != &LI && IdenticalComplexInst(&LI, Other) && + TryToRemoveALoad(&LI, Other)) return true; // An instruction was eliminated! return false; } -static inline bool isInvalidatingInst(const Instruction *I) { - return I->getOpcode() == Instruction::Store || - I->getOpcode() == Instruction::Call || - I->getOpcode() == Instruction::Invoke; +static inline bool isInvalidatingInst(const Instruction &I) { + return I.getOpcode() == Instruction::Store || + I.getOpcode() == Instruction::Call || + I.getOpcode() == Instruction::Invoke; } // TryToRemoveALoad - Try to remove one of L1 or L2. The problem with removing @@ -373,9 +366,7 @@ bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) { BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent(); - // FIXME: This is incredibly painful with broken rep - BasicBlock::iterator L1I = std::find(BB1->begin(), BB1->end(), L1); - assert(L1I != BB1->end() && "Inst not in own parent?"); + BasicBlock::iterator L1I = L1; // L1 now dominates L2. Check to see if the intervening instructions between // the two loads include a store or call... @@ -384,7 +375,7 @@ bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) { // In this degenerate case, no checking of global basic blocks has to occur // just check the instructions BETWEEN L1 & L2... // - for (++L1I; *L1I != L2; ++L1I) + for (++L1I; &*L1I != L2; ++L1I) if (isInvalidatingInst(*L1I)) return false; // Cannot eliminate load @@ -404,7 +395,7 @@ bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) { // Make sure that there are no store instructions between the start of BB2 // and the second load instruction... // - for (BasicBlock::iterator II = BB2->begin(); *II != L2; ++II) + for (BasicBlock::iterator II = BB2->begin(); &*II != L2; ++II) if (isInvalidatingInst(*II)) { BBContainsStore[BB2] = true; return false; // Cannot eliminate load diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp index 6446526..7a32315 100644 --- a/lib/Transforms/Scalar/IndVarSimplify.cpp +++ b/lib/Transforms/Scalar/IndVarSimplify.cpp @@ -47,9 +47,10 @@ static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { // info into a vector... // std::vector<InductionVariable> IndVars; // Induction variables for block - for (BasicBlock::iterator I = Header->begin(); - PHINode *PN = dyn_cast<PHINode>(*I); ++I) + BasicBlock::iterator AfterPHIIt = Header->begin(); + for (; PHINode *PN = dyn_cast<PHINode>(&*AfterPHIIt); ++AfterPHIIt) IndVars.push_back(InductionVariable(PN, Loops)); + // AfterPHIIt now points to first nonphi instruction... // If there are no phi nodes in this basic block, there can't be indvars... if (IndVars.empty()) return Changed; @@ -77,7 +78,7 @@ static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { PHINode *PN = new PHINode(Type::UIntTy, "cann-indvar"); // Insert the phi node at the end of the other phi nodes... - Header->getInstList().insert(Header->begin()+IndVars.size(), PN); + AfterPHIIt = ++Header->getInstList().insert(AfterPHIIt, PN); // Create the increment instruction to add one to the counter... Instruction *Add = BinaryOperator::create(Instruction::Add, PN, @@ -85,7 +86,7 @@ static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { "add1-indvar"); // Insert the add instruction after all of the PHI nodes... - Header->getInstList().insert(Header->begin()+(IndVars.size()+1), Add); + Header->getInstList().insert(AfterPHIIt, Add); // Figure out which block is incoming and which is the backedge for the loop BasicBlock *Incoming, *BackEdgeBlock; @@ -123,7 +124,6 @@ static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { // Loop through and replace all of the auxillary induction variables with // references to the primary induction variable... // - unsigned InsertPos = IndVars.size(); for (unsigned i = 0; i < IndVars.size(); ++i) { InductionVariable *IV = &IndVars[i]; @@ -139,12 +139,11 @@ static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { // If the types are not compatible, insert a cast now... if (Val->getType() != IV->Step->getType()) - Val = InsertCast(Val, IV->Step->getType(), - Header->begin()+InsertPos++); + Val = InsertCast(Val, IV->Step->getType(), AfterPHIIt); Val = BinaryOperator::create(Instruction::Mul, Val, IV->Step, Name); // Insert the phi node at the end of the other phi nodes... - Header->getInstList().insert(Header->begin()+InsertPos++, Val); + Header->getInstList().insert(AfterPHIIt, Val); } if (!isa<Constant>(IV->Start) || // If the start != 0 @@ -154,18 +153,16 @@ static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { // If the types are not compatible, insert a cast now... if (Val->getType() != IV->Start->getType()) - Val = InsertCast(Val, IV->Start->getType(), - Header->begin()+InsertPos++); + Val = InsertCast(Val, IV->Start->getType(), AfterPHIIt); Val = BinaryOperator::create(Instruction::Add, Val, IV->Start, Name); // Insert the phi node at the end of the other phi nodes... - Header->getInstList().insert(Header->begin()+InsertPos++, Val); + Header->getInstList().insert(AfterPHIIt, Val); } // If the PHI node has a different type than val is, insert a cast now... if (Val->getType() != IV->Phi->getType()) - Val = InsertCast(Val, IV->Phi->getType(), - Header->begin()+InsertPos++); + Val = InsertCast(Val, IV->Phi->getType(), AfterPHIIt); // Replace all uses of the old PHI node with the new computed value... IV->Phi->replaceAllUsesWith(Val); @@ -176,9 +173,7 @@ static bool TransformLoop(LoopInfo *Loops, Loop *Loop) { Val->setName(OldName); // Delete the old, now unused, phi node... - Header->getInstList().remove(IV->Phi); - delete IV->Phi; - InsertPos--; // Deleted an instr, decrement insert position + Header->getInstList().erase(IV->Phi); Changed = true; ++NumRemoved; } @@ -193,7 +188,7 @@ namespace { return "Induction Variable Cannonicalize"; } - virtual bool runOnFunction(Function *F) { + virtual bool runOnFunction(Function &) { LoopInfo &LI = getAnalysis<LoopInfo>(); // Induction Variables live in the header nodes of loops diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp index 6032ab9..7092989 100644 --- a/lib/Transforms/Scalar/InstructionCombining.cpp +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -36,11 +36,11 @@ namespace { // Worklist of all of the instructions that need to be simplified. std::vector<Instruction*> WorkList; - void AddUsesToWorkList(Instruction *I) { + void AddUsesToWorkList(Instruction &I) { // The instruction was simplified, add all users of the instruction to // the work lists because they might get more simplified now... // - for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); + for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) WorkList.push_back(cast<Instruction>(*UI)); } @@ -48,7 +48,7 @@ namespace { public: const char *getPassName() const { return "Instruction Combining"; } - virtual bool runOnFunction(Function *F); + virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); @@ -61,37 +61,37 @@ namespace { // I - Change was made, I is still valid // otherwise - Change was made, replace I with returned instruction // - Instruction *visitNot(UnaryOperator *I); - Instruction *visitAdd(BinaryOperator *I); - Instruction *visitSub(BinaryOperator *I); - Instruction *visitMul(BinaryOperator *I); - Instruction *visitDiv(BinaryOperator *I); - Instruction *visitRem(BinaryOperator *I); - Instruction *visitAnd(BinaryOperator *I); - Instruction *visitOr (BinaryOperator *I); - Instruction *visitXor(BinaryOperator *I); - Instruction *visitSetCondInst(BinaryOperator *I); - Instruction *visitShiftInst(Instruction *I); - Instruction *visitCastInst(CastInst *CI); - Instruction *visitPHINode(PHINode *PN); - Instruction *visitGetElementPtrInst(GetElementPtrInst *GEP); - Instruction *visitMemAccessInst(MemAccessInst *MAI); + Instruction *visitNot(UnaryOperator &I); + Instruction *visitAdd(BinaryOperator &I); + Instruction *visitSub(BinaryOperator &I); + Instruction *visitMul(BinaryOperator &I); + Instruction *visitDiv(BinaryOperator &I); + Instruction *visitRem(BinaryOperator &I); + Instruction *visitAnd(BinaryOperator &I); + Instruction *visitOr (BinaryOperator &I); + Instruction *visitXor(BinaryOperator &I); + Instruction *visitSetCondInst(BinaryOperator &I); + Instruction *visitShiftInst(Instruction &I); + Instruction *visitCastInst(CastInst &CI); + Instruction *visitPHINode(PHINode &PN); + Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); + Instruction *visitMemAccessInst(MemAccessInst &MAI); // visitInstruction - Specify what to return for unhandled instructions... - Instruction *visitInstruction(Instruction *I) { return 0; } + Instruction *visitInstruction(Instruction &I) { return 0; } }; } -Instruction *InstCombiner::visitNot(UnaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitNot(UnaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... // not (not X) = X - if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(0))) + if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(0))) if (Op->getOpcode() == Instruction::Not) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op->getOperand(0)); - return I; + I.replaceAllUsesWith(Op->getOperand(0)); + return &I; } return 0; } @@ -100,9 +100,9 @@ Instruction *InstCombiner::visitNot(UnaryOperator *I) { // Make sure that this instruction has a constant on the right hand side if it // has any constant arguments. If not, fix it an return true. // -static bool SimplifyBinOp(BinaryOperator *I) { - if (isa<Constant>(I->getOperand(0)) && !isa<Constant>(I->getOperand(1))) - return !I->swapOperands(); +static bool SimplifyBinOp(BinaryOperator &I) { + if (isa<Constant>(I.getOperand(0)) && !isa<Constant>(I.getOperand(1))) + return !I.swapOperands(); return false; } @@ -118,16 +118,16 @@ static inline Value *dyn_castNegInst(Value *V) { return 0; } -Instruction *InstCombiner::visitAdd(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead add instructions... +Instruction *InstCombiner::visitAdd(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead add instructions... bool Changed = SimplifyBinOp(I); - Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); // Eliminate 'add int %X, 0' - if (RHS == Constant::getNullValue(I->getType())) { + if (RHS == Constant::getNullValue(I.getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(LHS); - return I; + I.replaceAllUsesWith(LHS); + return &I; } // -A + B --> B - A @@ -150,33 +150,33 @@ Instruction *InstCombiner::visitAdd(BinaryOperator *I) { // %Z = add int %X, 2 // if (Constant *Val = *Op2 + *cast<Constant>(ILHS->getOperand(1))) { - I->setOperand(0, ILHS->getOperand(0)); - I->setOperand(1, Val); - return I; + I.setOperand(0, ILHS->getOperand(0)); + I.setOperand(1, Val); + return &I; } } } } - return Changed ? I : 0; + return Changed ? &I : 0; } -Instruction *InstCombiner::visitSub(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead add instructions... - Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); +Instruction *InstCombiner::visitSub(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead add instructions... + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Op0 == Op1) { // sub X, X -> 0 AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Constant::getNullValue(I->getType())); - return I; + I.replaceAllUsesWith(Constant::getNullValue(I.getType())); + return &I; } // If this is a subtract instruction with a constant RHS, convert it to an add // instruction of a negative constant // if (Constant *Op2 = dyn_cast<Constant>(Op1)) - if (Constant *RHS = *Constant::getNullValue(I->getType()) - *Op2) // 0 - RHS - return BinaryOperator::create(Instruction::Add, Op0, RHS, I->getName()); + if (Constant *RHS = *Constant::getNullValue(I.getType()) - *Op2) // 0 - RHS + return BinaryOperator::create(Instruction::Add, Op0, RHS, I.getName()); // If this is a 'C = x-B', check to see if 'B = -A', so that C = x+A... if (Value *V = dyn_castNegInst(Op1)) @@ -198,59 +198,59 @@ Instruction *InstCombiner::visitSub(BinaryOperator *I) { return 0; } -Instruction *InstCombiner::visitMul(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitMul(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); - Value *Op1 = I->getOperand(0); + Value *Op1 = I.getOperand(0); // Simplify add instructions with a constant RHS... - if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1))) { - if (I->getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(1)){ + if (Constant *Op2 = dyn_cast<Constant>(I.getOperand(1))) { + if (I.getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(1)){ // Eliminate 'mul int %X, 1' AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op1); - return I; + I.replaceAllUsesWith(Op1); + return &I; - } else if (I->getType()->isIntegral() && + } else if (I.getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(2)) { // Convert 'mul int %X, 2' to 'add int %X, %X' - return BinaryOperator::create(Instruction::Add, Op1, Op1, I->getName()); + return BinaryOperator::create(Instruction::Add, Op1, Op1, I.getName()); } else if (Op2->isNullValue()) { // Eliminate 'mul int %X, 0' - AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op2); // Set this value to zero directly - return I; + AddUsesToWorkList(I); // Add all modified instrs to worklist + I.replaceAllUsesWith(Op2); // Set this value to zero directly + return &I; } } - return Changed ? I : 0; + return Changed ? &I : 0; } -Instruction *InstCombiner::visitDiv(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitDiv(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... // div X, 1 == X - if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) + if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) if (RHS->equalsInt(1)) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(I->getOperand(0)); - return I; + I.replaceAllUsesWith(I.getOperand(0)); + return &I; } return 0; } -Instruction *InstCombiner::visitRem(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitRem(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... // rem X, 1 == 0 - if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) + if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) if (RHS->equalsInt(1)) { - AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Constant::getNullValue(I->getType())); - return I; + AddUsesToWorkList(I); // Add all modified instrs to worklist + I.replaceAllUsesWith(Constant::getNullValue(I.getType())); + return &I; } return 0; } @@ -273,123 +273,123 @@ static Constant *getMaxValue(const Type *Ty) { } -Instruction *InstCombiner::visitAnd(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitAnd(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); - Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // and X, X = X and X, 0 == 0 - if (Op0 == Op1 || Op1 == Constant::getNullValue(I->getType())) { - AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op1); - return I; + if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) { + AddUsesToWorkList(I); // Add all modified instrs to worklist + I.replaceAllUsesWith(Op1); + return &I; } // and X, -1 == X if (Constant *RHS = dyn_cast<Constant>(Op1)) - if (RHS == getMaxValue(I->getType())) { + if (RHS == getMaxValue(I.getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op0); - return I; + I.replaceAllUsesWith(Op0); + return &I; } - return Changed ? I : 0; + return Changed ? &I : 0; } -Instruction *InstCombiner::visitOr(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitOr(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); - Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // or X, X = X or X, 0 == X - if (Op0 == Op1 || Op1 == Constant::getNullValue(I->getType())) { + if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op0); - return I; + I.replaceAllUsesWith(Op0); + return &I; } // or X, -1 == -1 if (Constant *RHS = dyn_cast<Constant>(Op1)) - if (RHS == getMaxValue(I->getType())) { + if (RHS == getMaxValue(I.getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op1); - return I; + I.replaceAllUsesWith(Op1); + return &I; } - return Changed ? I : 0; + return Changed ? &I : 0; } -Instruction *InstCombiner::visitXor(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitXor(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); - Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // xor X, X = 0 if (Op0 == Op1) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Constant::getNullValue(I->getType())); - return I; + I.replaceAllUsesWith(Constant::getNullValue(I.getType())); + return &I; } // xor X, 0 == X - if (Op1 == Constant::getNullValue(I->getType())) { + if (Op1 == Constant::getNullValue(I.getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op0); - return I; + I.replaceAllUsesWith(Op0); + return &I; } - return Changed ? I : 0; + return Changed ? &I : 0; } // isTrueWhenEqual - Return true if the specified setcondinst instruction is // true when both operands are equal... // -static bool isTrueWhenEqual(Instruction *I) { - return I->getOpcode() == Instruction::SetEQ || - I->getOpcode() == Instruction::SetGE || - I->getOpcode() == Instruction::SetLE; +static bool isTrueWhenEqual(Instruction &I) { + return I.getOpcode() == Instruction::SetEQ || + I.getOpcode() == Instruction::SetGE || + I.getOpcode() == Instruction::SetLE; } -Instruction *InstCombiner::visitSetCondInst(BinaryOperator *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... bool Changed = SimplifyBinOp(I); // setcc X, X - if (I->getOperand(0) == I->getOperand(1)) { + if (I.getOperand(0) == I.getOperand(1)) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(ConstantBool::get(isTrueWhenEqual(I))); - return I; + I.replaceAllUsesWith(ConstantBool::get(isTrueWhenEqual(I))); + return &I; } // setcc <global*>, 0 - Global value addresses are never null! - if (isa<GlobalValue>(I->getOperand(0)) && - isa<ConstantPointerNull>(I->getOperand(1))) { + if (isa<GlobalValue>(I.getOperand(0)) && + isa<ConstantPointerNull>(I.getOperand(1))) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(ConstantBool::get(!isTrueWhenEqual(I))); - return I; + I.replaceAllUsesWith(ConstantBool::get(!isTrueWhenEqual(I))); + return &I; } - return Changed ? I : 0; + return Changed ? &I : 0; } -Instruction *InstCombiner::visitShiftInst(Instruction *I) { - if (I->use_empty()) return 0; // Don't fix dead instructions... - assert(I->getOperand(1)->getType() == Type::UByteTy); - Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1); +Instruction *InstCombiner::visitShiftInst(Instruction &I) { + if (I.use_empty()) return 0; // Don't fix dead instructions... + assert(I.getOperand(1)->getType() == Type::UByteTy); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // shl X, 0 == X and shr X, 0 == X // shl 0, X == 0 and shr 0, X == 0 if (Op1 == Constant::getNullValue(Type::UByteTy) || Op0 == Constant::getNullValue(Op0->getType())) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Op0); - return I; + I.replaceAllUsesWith(Op0); + return &I; } // shl int X, 32 = 0 and shr sbyte Y, 9 = 0, ... just don't eliminate shr of @@ -398,10 +398,10 @@ Instruction *InstCombiner::visitShiftInst(Instruction *I) { if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) { unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8; if (CUI->getValue() >= TypeBits && - !(Op0->getType()->isSigned() && I->getOpcode() == Instruction::Shr)) { + !(Op0->getType()->isSigned() && I.getOpcode() == Instruction::Shr)) { AddUsesToWorkList(I); // Add all modified instrs to worklist - I->replaceAllUsesWith(Constant::getNullValue(Op0->getType())); - return I; + I.replaceAllUsesWith(Constant::getNullValue(Op0->getType())); + return &I; } } return 0; @@ -411,12 +411,12 @@ Instruction *InstCombiner::visitShiftInst(Instruction *I) { // isEliminableCastOfCast - Return true if it is valid to eliminate the CI // instruction. // -static inline bool isEliminableCastOfCast(const CastInst *CI, +static inline bool isEliminableCastOfCast(const CastInst &CI, const CastInst *CSrc) { - assert(CI->getOperand(0) == CSrc); + assert(CI.getOperand(0) == CSrc); const Type *SrcTy = CSrc->getOperand(0)->getType(); const Type *MidTy = CSrc->getType(); - const Type *DstTy = CI->getType(); + const Type *DstTy = CI.getType(); // It is legal to eliminate the instruction if casting A->B->A if (SrcTy == DstTy) return true; @@ -437,27 +437,27 @@ static inline bool isEliminableCastOfCast(const CastInst *CI, // CastInst simplification // -Instruction *InstCombiner::visitCastInst(CastInst *CI) { - if (CI->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitCastInst(CastInst &CI) { + if (CI.use_empty()) return 0; // Don't fix dead instructions... // If the user is casting a value to the same type, eliminate this cast // instruction... - if (CI->getType() == CI->getOperand(0)->getType() && !CI->use_empty()) { + if (CI.getType() == CI.getOperand(0)->getType() && !CI.use_empty()) { AddUsesToWorkList(CI); // Add all modified instrs to worklist - CI->replaceAllUsesWith(CI->getOperand(0)); - return CI; + CI.replaceAllUsesWith(CI.getOperand(0)); + return &CI; } // If casting the result of another cast instruction, try to eliminate this // one! // - if (CastInst *CSrc = dyn_cast<CastInst>(CI->getOperand(0))) + if (CastInst *CSrc = dyn_cast<CastInst>(CI.getOperand(0))) if (isEliminableCastOfCast(CI, CSrc)) { // This instruction now refers directly to the cast's src operand. This // has a good chance of making CSrc dead. - CI->setOperand(0, CSrc->getOperand(0)); - return CI; + CI.setOperand(0, CSrc->getOperand(0)); + return &CI; } return 0; @@ -466,28 +466,28 @@ Instruction *InstCombiner::visitCastInst(CastInst *CI) { // PHINode simplification // -Instruction *InstCombiner::visitPHINode(PHINode *PN) { - if (PN->use_empty()) return 0; // Don't fix dead instructions... +Instruction *InstCombiner::visitPHINode(PHINode &PN) { + if (PN.use_empty()) return 0; // Don't fix dead instructions... // If the PHI node only has one incoming value, eliminate the PHI node... - if (PN->getNumIncomingValues() == 1) { + if (PN.getNumIncomingValues() == 1) { AddUsesToWorkList(PN); // Add all modified instrs to worklist - PN->replaceAllUsesWith(PN->getIncomingValue(0)); - return PN; + PN.replaceAllUsesWith(PN.getIncomingValue(0)); + return &PN; } return 0; } -Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst *GEP) { +Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Is it getelementptr %P, uint 0 - // If so, elminate the noop. - if (GEP->getNumOperands() == 2 && !GEP->use_empty() && - GEP->getOperand(1) == Constant::getNullValue(Type::UIntTy)) { + // If so, eliminate the noop. + if (GEP.getNumOperands() == 2 && !GEP.use_empty() && + GEP.getOperand(1) == Constant::getNullValue(Type::UIntTy)) { AddUsesToWorkList(GEP); // Add all modified instrs to worklist - GEP->replaceAllUsesWith(GEP->getOperand(0)); - return GEP; + GEP.replaceAllUsesWith(GEP.getOperand(0)); + return &GEP; } return visitMemAccessInst(GEP); @@ -498,36 +498,36 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst *GEP) { // getelementptr instruction, combine the indices of the GEP into this // instruction // -Instruction *InstCombiner::visitMemAccessInst(MemAccessInst *MAI) { +Instruction *InstCombiner::visitMemAccessInst(MemAccessInst &MAI) { GetElementPtrInst *Src = - dyn_cast<GetElementPtrInst>(MAI->getPointerOperand()); + dyn_cast<GetElementPtrInst>(MAI.getPointerOperand()); if (!Src) return 0; std::vector<Value *> Indices; // Only special case we have to watch out for is pointer arithmetic on the // 0th index of MAI. - unsigned FirstIdx = MAI->getFirstIndexOperandNumber(); - if (FirstIdx == MAI->getNumOperands() || - (FirstIdx == MAI->getNumOperands()-1 && - MAI->getOperand(FirstIdx) == ConstantUInt::get(Type::UIntTy, 0))) { + unsigned FirstIdx = MAI.getFirstIndexOperandNumber(); + if (FirstIdx == MAI.getNumOperands() || + (FirstIdx == MAI.getNumOperands()-1 && + MAI.getOperand(FirstIdx) == ConstantUInt::get(Type::UIntTy, 0))) { // Replace the index list on this MAI with the index on the getelementptr Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()); - } else if (*MAI->idx_begin() == ConstantUInt::get(Type::UIntTy, 0)) { + } else if (*MAI.idx_begin() == ConstantUInt::get(Type::UIntTy, 0)) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()); - Indices.insert(Indices.end(), MAI->idx_begin()+1, MAI->idx_end()); + Indices.insert(Indices.end(), MAI.idx_begin()+1, MAI.idx_end()); } if (Indices.empty()) return 0; // Can't do the fold? - switch (MAI->getOpcode()) { + switch (MAI.getOpcode()) { case Instruction::GetElementPtr: - return new GetElementPtrInst(Src->getOperand(0), Indices, MAI->getName()); + return new GetElementPtrInst(Src->getOperand(0), Indices, MAI.getName()); case Instruction::Load: - return new LoadInst(Src->getOperand(0), Indices, MAI->getName()); + return new LoadInst(Src->getOperand(0), Indices, MAI.getName()); case Instruction::Store: - return new StoreInst(MAI->getOperand(0), Src->getOperand(0), Indices); + return new StoreInst(MAI.getOperand(0), Src->getOperand(0), Indices); default: assert(0 && "Unknown memaccessinst!"); break; @@ -537,7 +537,7 @@ Instruction *InstCombiner::visitMemAccessInst(MemAccessInst *MAI) { } -bool InstCombiner::runOnFunction(Function *F) { +bool InstCombiner::runOnFunction(Function &F) { bool Changed = false; WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F)); @@ -547,7 +547,7 @@ bool InstCombiner::runOnFunction(Function *F) { WorkList.pop_back(); // Now that we have an instruction, try combining it to simplify it... - Instruction *Result = visit(I); + Instruction *Result = visit(*I); if (Result) { ++NumCombined; // Should we replace the old instruction with a new one? @@ -562,10 +562,16 @@ bool InstCombiner::runOnFunction(Function *F) { } ReplaceInstWithInst(I, Result); + } else { + // FIXME: + // FIXME: + // FIXME: This should DCE the instruction to simplify the cases above. + // FIXME: + // FIXME: } WorkList.push_back(Result); - AddUsesToWorkList(Result); + AddUsesToWorkList(*Result); Changed = true; } } diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp index 2e5adf6..98de447 100644 --- a/lib/Transforms/Scalar/LICM.cpp +++ b/lib/Transforms/Scalar/LICM.cpp @@ -35,7 +35,7 @@ namespace { struct LICM : public FunctionPass, public InstVisitor<LICM> { const char *getPassName() const { return "Loop Invariant Code Motion"; } - virtual bool runOnFunction(Function *F); + virtual bool runOnFunction(Function &F); // This transformation requires natural loop information... virtual void getAnalysisUsage(AnalysisUsage &AU) const { @@ -69,7 +69,7 @@ namespace { // hoist - When an instruction is found to only use loop invariant operands // that is safe to hoist, this instruction is called to do the dirty work. // - void hoist(Instruction *I); + void hoist(Instruction &I); // isLoopInvariant - Return true if the specified value is loop invariant inline bool isLoopInvariant(Value *V) { @@ -85,21 +85,21 @@ namespace { // the specified instruction types are hoisted. // friend class InstVisitor<LICM>; - void visitUnaryOperator(Instruction *I) { - if (isLoopInvariant(I->getOperand(0))) hoist(I); + void visitUnaryOperator(Instruction &I) { + if (isLoopInvariant(I.getOperand(0))) hoist(I); } - void visitBinaryOperator(Instruction *I) { - if (isLoopInvariant(I->getOperand(0)) &&isLoopInvariant(I->getOperand(1))) + void visitBinaryOperator(Instruction &I) { + if (isLoopInvariant(I.getOperand(0)) && isLoopInvariant(I.getOperand(1))) hoist(I); } - void visitCastInst(CastInst *I) { visitUnaryOperator((Instruction*)I); } - void visitShiftInst(ShiftInst *I) { visitBinaryOperator((Instruction*)I); } + void visitCastInst(CastInst &I) { visitUnaryOperator((Instruction&)I); } + void visitShiftInst(ShiftInst &I) { visitBinaryOperator((Instruction&)I); } - void visitGetElementPtrInst(GetElementPtrInst *GEPI) { - Instruction *I = (Instruction*)GEPI; - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) - if (!isLoopInvariant(I->getOperand(i))) return; + void visitGetElementPtrInst(GetElementPtrInst &GEPI) { + Instruction &I = (Instruction&)GEPI; + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + if (!isLoopInvariant(I.getOperand(i))) return; hoist(I); } }; @@ -107,7 +107,7 @@ namespace { Pass *createLICMPass() { return new LICM(); } -bool LICM::runOnFunction(Function *F) { +bool LICM::runOnFunction(Function &) { // get our loop information... const std::vector<Loop*> &TopLevelLoops = getAnalysis<LoopInfo>().getTopLevelLoops(); @@ -177,30 +177,26 @@ void LICM::visitLoop(Loop *L) { } void LICM::visitBasicBlock(BasicBlock *BB) { - // This cannot use an iterator, because it might get invalidated when PHI - // nodes are inserted! - // - for (unsigned i = 0; i < BB->size(); ) { - visit(BB->begin()[i]); + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { + visit(*I); - BasicBlock::iterator It = BB->begin()+i; - if (dceInstruction(It)) + if (dceInstruction(I)) Changed = true; else - ++i; + ++I; } } -void LICM::hoist(Instruction *Inst) { - if (Inst->use_empty()) return; // Don't (re) hoist dead instructions! +void LICM::hoist(Instruction &Inst) { + if (Inst.use_empty()) return; // Don't (re) hoist dead instructions! //cerr << "Hoisting " << Inst; BasicBlock *Header = CurLoop->getHeader(); // Old instruction will be removed, so take it's name... - string InstName = Inst->getName(); - Inst->setName(""); + string InstName = Inst.getName(); + Inst.setName(""); // The common case is that we have a pre-header. Generate special case code // that is faster if that is the case. @@ -209,21 +205,21 @@ void LICM::hoist(Instruction *Inst) { BasicBlock *Pred = LoopPreds[0]; // Create a new copy of the instruction, for insertion into Pred. - Instruction *New = Inst->clone(); + Instruction *New = Inst.clone(); New->setName(InstName); // Insert the new node in Pred, before the terminator. - Pred->getInstList().insert(Pred->end()-1, New); + Pred->getInstList().insert(--Pred->end(), New); - // Kill the old instruction. - Inst->replaceAllUsesWith(New); + // Kill the old instruction... + Inst.replaceAllUsesWith(New); ++NumHoistedPH; } else { // No loop pre-header, insert a PHI node into header to capture all of the // incoming versions of the value. // - PHINode *LoopVal = new PHINode(Inst->getType(), InstName+".phi"); + PHINode *LoopVal = new PHINode(Inst.getType(), InstName+".phi"); // Insert the new PHI node into the loop header... Header->getInstList().push_front(LoopVal); @@ -233,11 +229,11 @@ void LICM::hoist(Instruction *Inst) { BasicBlock *Pred = LoopPreds[i]; // Create a new copy of the instruction, for insertion into Pred. - Instruction *New = Inst->clone(); + Instruction *New = Inst.clone(); New->setName(InstName); // Insert the new node in Pred, before the terminator. - Pred->getInstList().insert(Pred->end()-1, New); + Pred->getInstList().insert(--Pred->end(), New); // Add the incoming value to the PHI node. LoopVal->addIncoming(New, Pred); @@ -253,7 +249,7 @@ void LICM::hoist(Instruction *Inst) { // entire loop body. The old definition was defined _inside_ of the loop, // so the scope cannot extend outside of the loop, so we're ok. // - Inst->replaceAllUsesWith(LoopVal); + Inst.replaceAllUsesWith(LoopVal); ++NumHoistedNPH; } diff --git a/lib/Transforms/Scalar/PiNodeInsertion.cpp b/lib/Transforms/Scalar/PiNodeInsertion.cpp index 2e9c328..2c16049 100644 --- a/lib/Transforms/Scalar/PiNodeInsertion.cpp +++ b/lib/Transforms/Scalar/PiNodeInsertion.cpp @@ -42,7 +42,7 @@ namespace { struct PiNodeInserter : public FunctionPass { const char *getPassName() const { return "Pi Node Insertion"; } - virtual bool runOnFunction(Function *F); + virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); @@ -61,11 +61,10 @@ namespace { Pass *createPiNodeInsertionPass() { return new PiNodeInserter(); } -bool PiNodeInserter::runOnFunction(Function *F) { +bool PiNodeInserter::runOnFunction(Function &F) { bool Changed = false; - for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { - BasicBlock *BB = *I; - TerminatorInst *TI = BB->getTerminator(); + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { + TerminatorInst *TI = I->getTerminator(); // FIXME: Insert PI nodes for switch statements too @@ -112,8 +111,7 @@ bool PiNodeInserter::runOnFunction(Function *F) { } -// alreadyHasPiNodeFor - Return true if there is already a Pi node in BB for -// V. +// alreadyHasPiNodeFor - Return true if there is already a Pi node in BB for V. static bool alreadyHasPiNodeFor(Value *V, BasicBlock *BB) { for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) if (PHINode *PN = dyn_cast<PHINode>(*I)) diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp index fcbf8b3..7ccbd7b 100644 --- a/lib/Transforms/Scalar/Reassociate.cpp +++ b/lib/Transforms/Scalar/Reassociate.cpp @@ -39,13 +39,13 @@ namespace { return "Expression Reassociation"; } - bool runOnFunction(Function *F); + bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); } private: - void BuildRankMap(Function *F); + void BuildRankMap(Function &F); unsigned getRank(Value *V); bool ReassociateExpr(BinaryOperator *I); bool ReassociateBB(BasicBlock *BB); @@ -54,9 +54,9 @@ namespace { Pass *createReassociatePass() { return new Reassociate(); } -void Reassociate::BuildRankMap(Function *F) { +void Reassociate::BuildRankMap(Function &F) { unsigned i = 1; - ReversePostOrderTraversal<Function*> RPOT(F); + ReversePostOrderTraversal<Function*> RPOT(&F); for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) RankMap[*I] = ++i; @@ -182,15 +182,11 @@ static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) { // adding it now, we are assured that the neg instructions we just // inserted dominate the instruction we are about to insert after them. // - BasicBlock::iterator NBI = BI; - - // Scan through the inserted instructions, looking for RHS, which must be - // after LHS in the instruction list. - while (*NBI != RHS) ++NBI; + BasicBlock::iterator NBI = cast<Instruction>(RHS); Instruction *Add = BinaryOperator::create(Instruction::Add, LHS, RHS, I->getName()+".neg"); - BB->getInstList().insert(NBI+1, Add); // Add to the basic block... + BB->getInstList().insert(++NBI, Add); // Add to the basic block... return Add; } @@ -209,12 +205,11 @@ static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) { bool Reassociate::ReassociateBB(BasicBlock *BB) { bool Changed = false; for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) { - Instruction *Inst = *BI; // If this instruction is a commutative binary operator, and the ranks of // the two operands are sorted incorrectly, fix it now. // - if (BinaryOperator *I = isCommutativeOperator(Inst)) { + if (BinaryOperator *I = isCommutativeOperator(BI)) { if (!I->use_empty()) { // Make sure that we don't have a tree-shaped computation. If we do, // linearize it. Convert (A+B)+(C+D) into ((A+B)+C)+D @@ -245,22 +240,23 @@ bool Reassociate::ReassociateBB(BasicBlock *BB) { Changed |= ReassociateExpr(I); } - } else if (Inst->getOpcode() == Instruction::Sub && - Inst->getOperand(0) != Constant::getNullValue(Inst->getType())) { + } else if (BI->getOpcode() == Instruction::Sub && + BI->getOperand(0) != Constant::getNullValue(BI->getType())) { // Convert a subtract into an add and a neg instruction... so that sub // instructions can be commuted with other add instructions... // Instruction *New = BinaryOperator::create(Instruction::Add, - Inst->getOperand(0), - Inst->getOperand(1), - Inst->getName()); - Value *NegatedValue = Inst->getOperand(1); + BI->getOperand(0), + BI->getOperand(1), + BI->getName()); + Value *NegatedValue = BI->getOperand(1); // Everyone now refers to the add instruction... - Inst->replaceAllUsesWith(New); + BI->replaceAllUsesWith(New); // Put the new add in the place of the subtract... deleting the subtract - delete BB->getInstList().replaceWith(BI, New); + BI = BB->getInstList().erase(BI); + BI = ++BB->getInstList().insert(BI, New); // Calculate the negative value of Operand 1 of the sub instruction... // and set it as the RHS of the add instruction we just made... @@ -275,13 +271,13 @@ bool Reassociate::ReassociateBB(BasicBlock *BB) { } -bool Reassociate::runOnFunction(Function *F) { +bool Reassociate::runOnFunction(Function &F) { // Recalculate the rank map for F BuildRankMap(F); bool Changed = false; - for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) - Changed |= ReassociateBB(*FI); + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) + Changed |= ReassociateBB(FI); // We are done with the rank map... RankMap.clear(); diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp index 93e85fc..4d752e9 100644 --- a/lib/Transforms/Scalar/SCCP.cpp +++ b/lib/Transforms/Scalar/SCCP.cpp @@ -101,7 +101,7 @@ public: // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm, // and return true if the function was modified. // - bool runOnFunction(Function *F); + bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); @@ -167,7 +167,7 @@ private: // void markExecutable(BasicBlock *BB) { if (BBExecutable.count(BB)) return; - DEBUG(cerr << "Marking BB Executable: " << BB); + DEBUG(cerr << "Marking BB Executable: " << *BB); BBExecutable.insert(BB); // Basic block is executable! BBWorkList.push_back(BB); // Add the block to the work list! } @@ -177,35 +177,35 @@ private: // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. // - void visitPHINode(PHINode *I); + void visitPHINode(PHINode &I); // Terminators - void visitReturnInst(ReturnInst *I) { /*does not have an effect*/ } - void visitTerminatorInst(TerminatorInst *TI); + void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } + void visitTerminatorInst(TerminatorInst &TI); - void visitUnaryOperator(Instruction *I); - void visitCastInst(CastInst *I) { visitUnaryOperator(I); } - void visitBinaryOperator(Instruction *I); - void visitShiftInst(ShiftInst *I) { visitBinaryOperator(I); } + void visitUnaryOperator(Instruction &I); + void visitCastInst(CastInst &I) { visitUnaryOperator(I); } + void visitBinaryOperator(Instruction &I); + void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } // Instructions that cannot be folded away... - void visitStoreInst (Instruction *I) { /*returns void*/ } - void visitMemAccessInst (Instruction *I) { markOverdefined(I); } - void visitCallInst (Instruction *I) { markOverdefined(I); } - void visitInvokeInst (Instruction *I) { markOverdefined(I); } - void visitAllocationInst(Instruction *I) { markOverdefined(I); } - void visitFreeInst (Instruction *I) { /*returns void*/ } - - void visitInstruction(Instruction *I) { + void visitStoreInst (Instruction &I) { /*returns void*/ } + void visitMemAccessInst (Instruction &I) { markOverdefined(&I); } + void visitCallInst (Instruction &I) { markOverdefined(&I); } + void visitInvokeInst (Instruction &I) { markOverdefined(&I); } + void visitAllocationInst(Instruction &I) { markOverdefined(&I); } + void visitFreeInst (Instruction &I) { /*returns void*/ } + + void visitInstruction(Instruction &I) { // If a new instruction is added to LLVM that we don't handle... cerr << "SCCP: Don't know how to handle: " << I; - markOverdefined(I); // Just in case + markOverdefined(&I); // Just in case } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // - void getFeasibleSuccessors(TerminatorInst *I, std::vector<bool> &Succs); + void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible... @@ -218,8 +218,8 @@ private: // void OperandChangedState(User *U) { // Only instructions use other variable values! - Instruction *I = cast<Instruction>(U); - if (!BBExecutable.count(I->getParent())) return;// Inst not executable yet! + Instruction &I = cast<Instruction>(*U); + if (!BBExecutable.count(I.getParent())) return;// Inst not executable yet! visit(I); } }; @@ -241,9 +241,9 @@ Pass *createSCCPPass() { // runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm, // and return true if the function was modified. // -bool SCCP::runOnFunction(Function *F) { +bool SCCP::runOnFunction(Function &F) { // Mark the first block of the function as being executable... - markExecutable(F->front()); + markExecutable(&F.front()); // Process the work lists until their are empty! while (!BBWorkList.empty() || !InstWorkList.empty()) { @@ -284,8 +284,8 @@ bool SCCP::runOnFunction(Function *F) { } if (DebugFlag) { - for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) - if (!BBExecutable.count(*I)) + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + if (!BBExecutable.count(I)) cerr << "BasicBlock Dead:" << *I; } @@ -293,20 +293,19 @@ bool SCCP::runOnFunction(Function *F) { // constants if we have found them to be of constant values. // bool MadeChanges = false; - for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) { - BasicBlock *BB = *FI; + for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { - Instruction *Inst = *BI; - InstVal &IV = ValueState[Inst]; + Instruction &Inst = *BI; + InstVal &IV = ValueState[&Inst]; if (IV.isConstant()) { Constant *Const = IV.getConstant(); DEBUG(cerr << "Constant: " << Const << " = " << Inst); // Replaces all of the uses of a variable with uses of the constant. - Inst->replaceAllUsesWith(Const); + Inst.replaceAllUsesWith(Const); // Remove the operator from the list of definitions... and delete it. - delete BB->getInstList().remove(BI); + BI = BB->getInstList().erase(BI); // Hey, we just changed something! MadeChanges = true; @@ -315,7 +314,6 @@ bool SCCP::runOnFunction(Function *F) { ++BI; } } - } // Reset state so that the next invocation will have empty data structures BBExecutable.clear(); @@ -328,9 +326,9 @@ bool SCCP::runOnFunction(Function *F) { // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // -void SCCP::getFeasibleSuccessors(TerminatorInst *TI, std::vector<bool> &Succs) { - assert(Succs.size() == TI->getNumSuccessors() && "Succs vector wrong size!"); - if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { +void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) { + assert(Succs.size() == TI.getNumSuccessors() && "Succs vector wrong size!"); + if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; } else { @@ -343,14 +341,14 @@ void SCCP::getFeasibleSuccessors(TerminatorInst *TI, std::vector<bool> &Succs) { Succs[BCValue.getConstant() == ConstantBool::False] = true; } } - } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { + } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { // Invoke instructions successors are always executable. Succs[0] = Succs[1] = true; - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { InstVal &SCValue = getValueState(SI->getCondition()); if (SCValue.isOverdefined()) { // Overdefined condition? // All destinations are executable! - Succs.assign(TI->getNumSuccessors(), true); + Succs.assign(TI.getNumSuccessors(), true); } else if (SCValue.isConstant()) { Constant *CPV = SCValue.getConstant(); // Make sure to skip the "default value" which isn't a value @@ -367,7 +365,7 @@ void SCCP::getFeasibleSuccessors(TerminatorInst *TI, std::vector<bool> &Succs) { } } else { cerr << "SCCP: Don't know how to handle: " << TI; - Succs.assign(TI->getNumSuccessors(), true); + Succs.assign(TI.getNumSuccessors(), true); } } @@ -384,7 +382,7 @@ bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { // Check to make sure this edge itself is actually feasible now... TerminatorInst *FT = From->getTerminator(); std::vector<bool> SuccFeasible(FT->getNumSuccessors()); - getFeasibleSuccessors(FT, SuccFeasible); + getFeasibleSuccessors(*FT, SuccFeasible); // Check all edges from From to To. If any are feasible, return true. for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) @@ -414,8 +412,8 @@ bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { // successors executable. // -void SCCP::visitPHINode(PHINode *PN) { - unsigned NumValues = PN->getNumIncomingValues(), i; +void SCCP::visitPHINode(PHINode &PN) { + unsigned NumValues = PN.getNumIncomingValues(), i; InstVal *OperandIV = 0; // Look at all of the executable operands of the PHI node. If any of them @@ -425,11 +423,11 @@ void SCCP::visitPHINode(PHINode *PN) { // If there are no executable operands, the PHI remains undefined. // for (i = 0; i < NumValues; ++i) { - if (isEdgeFeasible(PN->getIncomingBlock(i), PN->getParent())) { - InstVal &IV = getValueState(PN->getIncomingValue(i)); + if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { + InstVal &IV = getValueState(PN.getIncomingValue(i)); if (IV.isUndefined()) continue; // Doesn't influence PHI node. if (IV.isOverdefined()) { // PHI node becomes overdefined! - markOverdefined(PN); + markOverdefined(&PN); return; } @@ -445,7 +443,7 @@ void SCCP::visitPHINode(PHINode *PN) { // Yes there is. This means the PHI node is not constant. // You must be overdefined poor PHI. // - markOverdefined(PN); // The PHI node now becomes overdefined + markOverdefined(&PN); // The PHI node now becomes overdefined return; // I'm done analyzing you } } @@ -459,18 +457,18 @@ void SCCP::visitPHINode(PHINode *PN) { // if (OperandIV) { assert(OperandIV->isConstant() && "Should only be here for constants!"); - markConstant(PN, OperandIV->getConstant()); // Aquire operand value + markConstant(&PN, OperandIV->getConstant()); // Aquire operand value } } -void SCCP::visitTerminatorInst(TerminatorInst *TI) { - std::vector<bool> SuccFeasible(TI->getNumSuccessors()); +void SCCP::visitTerminatorInst(TerminatorInst &TI) { + std::vector<bool> SuccFeasible(TI.getNumSuccessors()); getFeasibleSuccessors(TI, SuccFeasible); // Mark all feasible successors executable... for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) { - BasicBlock *Succ = TI->getSuccessor(i); + BasicBlock *Succ = TI.getSuccessor(i); markExecutable(Succ); // Visit all of the PHI nodes that merge values from this block... @@ -478,49 +476,49 @@ void SCCP::visitTerminatorInst(TerminatorInst *TI) { // constant now may not be. // for (BasicBlock::iterator I = Succ->begin(); - PHINode *PN = dyn_cast<PHINode>(*I); ++I) - visitPHINode(PN); + PHINode *PN = dyn_cast<PHINode>(&*I); ++I) + visitPHINode(*PN); } } -void SCCP::visitUnaryOperator(Instruction *I) { - Value *V = I->getOperand(0); +void SCCP::visitUnaryOperator(Instruction &I) { + Value *V = I.getOperand(0); InstVal &VState = getValueState(V); if (VState.isOverdefined()) { // Inherit overdefinedness of operand - markOverdefined(I); + markOverdefined(&I); } else if (VState.isConstant()) { // Propogate constant value Constant *Result = isa<CastInst>(I) - ? ConstantFoldCastInstruction(VState.getConstant(), I->getType()) - : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant()); + ? ConstantFoldCastInstruction(VState.getConstant(), I.getType()) + : ConstantFoldUnaryInstruction(I.getOpcode(), VState.getConstant()); if (Result) { // This instruction constant folds! - markConstant(I, Result); + markConstant(&I, Result); } else { - markOverdefined(I); // Don't know how to fold this instruction. :( + markOverdefined(&I); // Don't know how to fold this instruction. :( } } } // Handle BinaryOperators and Shift Instructions... -void SCCP::visitBinaryOperator(Instruction *I) { - InstVal &V1State = getValueState(I->getOperand(0)); - InstVal &V2State = getValueState(I->getOperand(1)); +void SCCP::visitBinaryOperator(Instruction &I) { + InstVal &V1State = getValueState(I.getOperand(0)); + InstVal &V2State = getValueState(I.getOperand(1)); if (V1State.isOverdefined() || V2State.isOverdefined()) { - markOverdefined(I); + markOverdefined(&I); } else if (V1State.isConstant() && V2State.isConstant()) { Constant *Result = 0; if (isa<BinaryOperator>(I)) - Result = ConstantFoldBinaryInstruction(I->getOpcode(), + Result = ConstantFoldBinaryInstruction(I.getOpcode(), V1State.getConstant(), V2State.getConstant()); else if (isa<ShiftInst>(I)) - Result = ConstantFoldShiftInstruction(I->getOpcode(), + Result = ConstantFoldShiftInstruction(I.getOpcode(), V1State.getConstant(), V2State.getConstant()); if (Result) - markConstant(I, Result); // This instruction constant folds! + markConstant(&I, Result); // This instruction constant folds! else - markOverdefined(I); // Don't know how to fold this instruction. :( + markOverdefined(&I); // Don't know how to fold this instruction. :( } } diff --git a/lib/Transforms/Scalar/SimplifyCFG.cpp b/lib/Transforms/Scalar/SimplifyCFG.cpp index 14c42e2..08611d2 100644 --- a/lib/Transforms/Scalar/SimplifyCFG.cpp +++ b/lib/Transforms/Scalar/SimplifyCFG.cpp @@ -26,7 +26,7 @@ namespace { struct CFGSimplifyPass : public FunctionPass { const char *getPassName() const { return "Simplify CFG"; } - virtual bool runOnFunction(Function *F); + virtual bool runOnFunction(Function &F); }; } @@ -49,29 +49,28 @@ static bool MarkAliveBlocks(BasicBlock *BB, std::set<BasicBlock*> &Reachable) { // It is possible that we may require multiple passes over the code to fully // simplify the CFG. // -bool CFGSimplifyPass::runOnFunction(Function *F) { +bool CFGSimplifyPass::runOnFunction(Function &F) { std::set<BasicBlock*> Reachable; - bool Changed = MarkAliveBlocks(F->front(), Reachable); + bool Changed = MarkAliveBlocks(F.begin(), Reachable); // If there are unreachable blocks in the CFG... - if (Reachable.size() != F->size()) { - assert(Reachable.size() < F->size()); - NumSimpl += F->size()-Reachable.size(); + if (Reachable.size() != F.size()) { + assert(Reachable.size() < F.size()); + NumSimpl += F.size()-Reachable.size(); // Loop over all of the basic blocks that are not reachable, dropping all of // their internal references... - for (Function::iterator I = F->begin()+1, E = F->end(); I != E; ++I) - if (!Reachable.count(*I)) { - BasicBlock *BB = *I; + for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) + if (!Reachable.count(BB)) { for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI!=SE; ++SI) if (Reachable.count(*SI)) (*SI)->removePredecessor(BB); BB->dropAllReferences(); } - for (Function::iterator I = F->begin()+1; I != F->end();) - if (!Reachable.count(*I)) - delete F->getBasicBlocks().remove(I); + for (Function::iterator I = ++F.begin(); I != F.end();) + if (!Reachable.count(I)) + I = F.getBasicBlockList().erase(I); else ++I; @@ -85,12 +84,10 @@ bool CFGSimplifyPass::runOnFunction(Function *F) { // Loop over all of the basic blocks (except the first one) and remove them // if they are unneeded... // - for (Function::iterator BBIt = F->begin()+1; BBIt != F->end(); ) { - if (SimplifyCFG(BBIt)) { + for (Function::iterator BBIt = ++F.begin(); BBIt != F.end(); ) { + if (SimplifyCFG(BBIt++)) { LocalChange = true; ++NumSimpl; - } else { - ++BBIt; } } Changed |= LocalChange; diff --git a/lib/Transforms/Scalar/SymbolStripping.cpp b/lib/Transforms/Scalar/SymbolStripping.cpp index cc0852e..46f4e44 100644 --- a/lib/Transforms/Scalar/SymbolStripping.cpp +++ b/lib/Transforms/Scalar/SymbolStripping.cpp @@ -42,29 +42,12 @@ static bool StripSymbolTable(SymbolTable *SymTab) { return RemovedSymbol; } - -// DoSymbolStripping - Remove all symbolic information from a function -// -static bool doSymbolStripping(Function *F) { - return StripSymbolTable(F->getSymbolTable()); -} - -// doStripGlobalSymbols - Remove all symbolic information from all functions -// in a module, and all module level symbols. (function names, etc...) -// -static bool doStripGlobalSymbols(Module *M) { - // Remove all symbols from functions in this module... and then strip all of - // the symbols in this module... - // - return StripSymbolTable(M->getSymbolTable()); -} - namespace { struct SymbolStripping : public FunctionPass { const char *getPassName() const { return "Strip Symbols from Functions"; } - virtual bool runOnFunction(Function *F) { - return doSymbolStripping(F); + virtual bool runOnFunction(Function &F) { + return StripSymbolTable(F.getSymbolTable()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); @@ -73,8 +56,8 @@ namespace { struct FullSymbolStripping : public SymbolStripping { const char *getPassName() const { return "Strip Symbols from Module"; } - virtual bool doInitialization(Module *M) { - return doStripGlobalSymbols(M); + virtual bool doInitialization(Module &M) { + return StripSymbolTable(M.getSymbolTable()); } }; } diff --git a/lib/Transforms/TransformInternals.cpp b/lib/Transforms/TransformInternals.cpp index 9e7b63e..05bc694 100644 --- a/lib/Transforms/TransformInternals.cpp +++ b/lib/Transforms/TransformInternals.cpp @@ -140,12 +140,12 @@ const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal, Offset -= Index*ElSize; // Consume part of the offset if (BI) { // Generate code? - BasicBlock *BB = (**BI)->getParent(); + BasicBlock *BB = (*BI)->getParent(); if (Expr.Var->getType() != Type::UIntTy) { CastInst *IdxCast = new CastInst(Expr.Var, Type::UIntTy); if (Expr.Var->hasName()) IdxCast->setName(Expr.Var->getName()+"-idxcast"); - *BI = BB->getInstList().insert(*BI, IdxCast)+1; + *BI = ++BB->getInstList().insert(*BI, IdxCast); Expr.Var = IdxCast; } @@ -158,7 +158,7 @@ const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal, if (Expr.Var->hasName()) Scaler->setName(Expr.Var->getName()+"-scale"); - *BI = BB->getInstList().insert(*BI, Scaler)+1; + *BI = ++BB->getInstList().insert(*BI, Scaler); Expr.Var = Scaler; } @@ -168,7 +168,7 @@ const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal, Expr.Var, IndexAmt); if (Expr.Var->hasName()) Offseter->setName(Expr.Var->getName()+"-offset"); - *BI = BB->getInstList().insert(*BI, Offseter)+1; + *BI = ++BB->getInstList().insert(*BI, Offseter); Expr.Var = Offseter; } } diff --git a/lib/Transforms/Utils/LowerAllocations.cpp b/lib/Transforms/Utils/LowerAllocations.cpp index 80eab61..003be33 100644 --- a/lib/Transforms/Utils/LowerAllocations.cpp +++ b/lib/Transforms/Utils/LowerAllocations.cpp @@ -40,12 +40,12 @@ public: // doPassInitialization - For the lower allocations pass, this ensures that a // module contains a declaration for a malloc and a free function. // - bool doInitialization(Module *M); + bool doInitialization(Module &M); // runOnBasicBlock - This method does the actual work of converting // instructions over, assuming that the pass has already been initialized. // - bool runOnBasicBlock(BasicBlock *BB); + bool runOnBasicBlock(BasicBlock &BB); }; } @@ -61,7 +61,7 @@ Pass *createLowerAllocationsPass(const TargetData &TD) { // // This function is always successful. // -bool LowerAllocations::doInitialization(Module *M) { +bool LowerAllocations::doInitialization(Module &M) { const FunctionType *MallocType = FunctionType::get(PointerType::get(Type::SByteTy), vector<const Type*>(1, Type::UIntTy), false); @@ -70,8 +70,8 @@ bool LowerAllocations::doInitialization(Module *M) { vector<const Type*>(1, PointerType::get(Type::SByteTy)), false); - MallocFunc = M->getOrInsertFunction("malloc", MallocType); - FreeFunc = M->getOrInsertFunction("free" , FreeType); + MallocFunc = M.getOrInsertFunction("malloc", MallocType); + FreeFunc = M.getOrInsertFunction("free" , FreeType); return true; } @@ -79,17 +79,18 @@ bool LowerAllocations::doInitialization(Module *M) { // runOnBasicBlock - This method does the actual work of converting // instructions over, assuming that the pass has already been initialized. // -bool LowerAllocations::runOnBasicBlock(BasicBlock *BB) { +bool LowerAllocations::runOnBasicBlock(BasicBlock &BB) { bool Changed = false; - assert(MallocFunc && FreeFunc && BB && "Pass not initialized!"); + assert(MallocFunc && FreeFunc && "Pass not initialized!"); + + BasicBlock::InstListType &BBIL = BB.getInstList(); // Loop over all of the instructions, looking for malloc or free instructions - for (unsigned i = 0; i != BB->size(); ++i) { - BasicBlock::InstListType &BBIL = BB->getInstList(); - if (MallocInst *MI = dyn_cast<MallocInst>(*(BBIL.begin()+i))) { - BBIL.remove(BBIL.begin()+i); // remove the malloc instr... - - const Type *AllocTy = cast<PointerType>(MI->getType())->getElementType(); + for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) { + if (MallocInst *MI = dyn_cast<MallocInst>(&*I)) { + BBIL.remove(I); // remove the malloc instr... + + const Type *AllocTy = MI->getType()->getElementType(); // Get the number of bytes to be allocated for one element of the // requested type... @@ -103,35 +104,34 @@ bool LowerAllocations::runOnBasicBlock(BasicBlock *BB) { // Multiply it by the array size if neccesary... MallocArg = BinaryOperator::create(Instruction::Mul,MI->getOperand(0), MallocArg); - BBIL.insert(BBIL.begin()+i++, cast<Instruction>(MallocArg)); + I = ++BBIL.insert(I, cast<Instruction>(MallocArg)); } // Create the call to Malloc... CallInst *MCall = new CallInst(MallocFunc, vector<Value*>(1, MallocArg)); - BBIL.insert(BBIL.begin()+i, MCall); + I = BBIL.insert(I, MCall); // Create a cast instruction to convert to the right type... CastInst *MCast = new CastInst(MCall, MI->getType()); - BBIL.insert(BBIL.begin()+i+1, MCast); + I = BBIL.insert(++I, MCast); // Replace all uses of the old malloc inst with the cast inst MI->replaceAllUsesWith(MCast); delete MI; // Delete the malloc inst Changed = true; ++NumLowered; - } else if (FreeInst *FI = dyn_cast<FreeInst>(*(BBIL.begin()+i))) { - BBIL.remove(BB->getInstList().begin()+i); + } else if (FreeInst *FI = dyn_cast<FreeInst>(&*I)) { + BBIL.remove(I); // Cast the argument to free into a ubyte*... CastInst *MCast = new CastInst(FI->getOperand(0), PointerType::get(Type::UByteTy)); - BBIL.insert(BBIL.begin()+i, MCast); + I = ++BBIL.insert(I, MCast); // Insert a call to the free function... - CallInst *FCall = new CallInst(FreeFunc, - vector<Value*>(1, MCast)); - BBIL.insert(BBIL.begin()+i+1, FCall); + CallInst *FCall = new CallInst(FreeFunc, vector<Value*>(1, MCast)); + I = BBIL.insert(I, FCall); // Delete the old free instruction delete FI; diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp index 1afb11a..8a81ac7 100644 --- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp +++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp @@ -52,7 +52,7 @@ namespace { // runOnFunction - To run this pass, first we calculate the alloca // instructions that are safe for promotion, then we promote each one. // - virtual bool runOnFunction(Function *F); + virtual bool runOnFunction(Function &F); // getAnalysisUsage - We need dominance frontiers // @@ -65,7 +65,7 @@ namespace { void Traverse(BasicBlock *BB, BasicBlock *Pred, vector<Value*> &IncVals, set<BasicBlock*> &Visited); bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx); - void FindSafeAllocas(Function *F); + void FindSafeAllocas(Function &F); }; } // end of anonymous namespace @@ -102,12 +102,12 @@ static inline bool isSafeAlloca(const AllocaInst *AI) { // FindSafeAllocas - Find allocas that are safe to promote // -void PromotePass::FindSafeAllocas(Function *F) { - BasicBlock *BB = F->getEntryNode(); // Get the entry node for the function +void PromotePass::FindSafeAllocas(Function &F) { + BasicBlock &BB = F.getEntryNode(); // Get the entry node for the function // Look at all instructions in the entry node - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) - if (AllocaInst *AI = dyn_cast<AllocaInst>(*I)) // Is it an alloca? + for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(&*I)) // Is it an alloca? if (isSafeAlloca(AI)) { // If safe alloca, add alloca to safe list AllocaLookup[AI] = Allocas.size(); // Keep reverse mapping Allocas.push_back(AI); @@ -116,7 +116,7 @@ void PromotePass::FindSafeAllocas(Function *F) { -bool PromotePass::runOnFunction(Function *F) { +bool PromotePass::runOnFunction(Function &F) { // Calculate the set of safe allocas FindSafeAllocas(F); @@ -178,7 +178,7 @@ bool PromotePass::runOnFunction(Function *F) { // and inserting the phi nodes we marked as necessary // set<BasicBlock*> Visited; // The basic blocks we've already visited - Traverse(F->front(), 0, Values, Visited); + Traverse(F.begin(), 0, Values, Visited); // Remove all instructions marked by being placed in the KillList... // @@ -186,8 +186,7 @@ bool PromotePass::runOnFunction(Function *F) { Instruction *I = KillList.back(); KillList.pop_back(); - I->getParent()->getInstList().remove(I); - delete I; + I->getParent()->getInstList().erase(I); } NumPromoted += Allocas.size(); @@ -248,7 +247,7 @@ void PromotePass::Traverse(BasicBlock *BB, BasicBlock *Pred, // keep track of the value of each variable we're watching.. how? for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) { - Instruction *I = *II; //get the instruction + Instruction *I = II; // get the instruction if (LoadInst *LI = dyn_cast<LoadInst>(I)) { Value *Ptr = LI->getPointerOperand(); |