diff options
author | Chris Lattner <sabre@nondot.org> | 2010-03-01 21:49:54 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2010-03-01 21:49:54 +0000 |
commit | adc5347b54fa71368b7b93f003993ad90da99135 (patch) | |
tree | ff813abe5bbcb2f5a6fc49c5021b8e0b6d1421f6 /utils | |
parent | d44f16fce7b23d61e0b10cfdca3d10869b0236ae (diff) | |
download | external_llvm-adc5347b54fa71368b7b93f003993ad90da99135.zip external_llvm-adc5347b54fa71368b7b93f003993ad90da99135.tar.gz external_llvm-adc5347b54fa71368b7b93f003993ad90da99135.tar.bz2 |
optimize tblgen compile time by eliminating the old isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97504 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'utils')
-rw-r--r-- | utils/TableGen/DAGISelEmitter.cpp | 1757 | ||||
-rw-r--r-- | utils/TableGen/DAGISelEmitter.h | 16 |
2 files changed, 3 insertions, 1770 deletions
diff --git a/utils/TableGen/DAGISelEmitter.cpp b/utils/TableGen/DAGISelEmitter.cpp index bc57428..8816c9c 100644 --- a/utils/TableGen/DAGISelEmitter.cpp +++ b/utils/TableGen/DAGISelEmitter.cpp @@ -14,42 +14,13 @@ #include "DAGISelEmitter.h" #include "DAGISelMatcher.h" #include "Record.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/Debug.h" -#include <algorithm> -#include <deque> -#include <iostream> using namespace llvm; -#define ENABLE_NEW_ISEL - - -static cl::opt<bool> -GenDebug("gen-debug", cl::desc("Generate debug code"), cl::init(false)); - //===----------------------------------------------------------------------===// // DAGISelEmitter Helper methods // -/// getNodeName - The top level Select_* functions have an "SDNode* N" -/// argument. When expanding the pattern-matching code, the intermediate -/// variables have type SDValue. This function provides a uniform way to -/// reference the underlying "SDNode *" for both cases. -static std::string getNodeName(const std::string &S) { - if (S == "N") return S; - return S + ".getNode()"; -} - -/// getNodeValue - Similar to getNodeName, except it provides a uniform -/// way to access the SDValue for both cases. -static std::string getValueName(const std::string &S) { - if (S == "N") return "SDValue(N, 0)"; - return S; -} - /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. @@ -135,106 +106,6 @@ static unsigned getResultPatternSize(TreePatternNode *P, return Cost; } -// PatternSortingPredicate - return true if we prefer to match LHS before RHS. -// In particular, we want to match maximal patterns first and lowest cost within -// a particular complexity first. -struct PatternSortingPredicate { - PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} - CodeGenDAGPatterns &CGP; - - typedef std::pair<unsigned, std::string> CodeLine; - typedef std::vector<CodeLine> CodeList; - - bool operator()(const std::pair<const PatternToMatch*, CodeList> &LHSPair, - const std::pair<const PatternToMatch*, CodeList> &RHSPair) { - const PatternToMatch *LHS = LHSPair.first; - const PatternToMatch *RHS = RHSPair.first; - - unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP); - unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP); - LHSSize += LHS->getAddedComplexity(); - RHSSize += RHS->getAddedComplexity(); - if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost - if (LHSSize < RHSSize) return false; - - // If the patterns have equal complexity, compare generated instruction cost - unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); - unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); - if (LHSCost < RHSCost) return true; - if (LHSCost > RHSCost) return false; - - return getResultPatternSize(LHS->getDstPattern(), CGP) < - getResultPatternSize(RHS->getDstPattern(), CGP); - } -}; - -/// getRegisterValueType - Look up and return the ValueType of the specified -/// register. If the register is a member of multiple register classes which -/// have different associated types, return MVT::Other. -static MVT::SimpleValueType getRegisterValueType(Record *R, - const CodeGenTarget &T) { - bool FoundRC = false; - MVT::SimpleValueType VT = MVT::Other; - const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses(); - std::vector<CodeGenRegisterClass>::const_iterator RC; - std::vector<Record*>::const_iterator Element; - - for (RC = RCs.begin() ; RC != RCs.end() ; RC++) { - Element = find((*RC).Elements.begin(), (*RC).Elements.end(), R); - if (Element != (*RC).Elements.end()) { - if (!FoundRC) { - FoundRC = true; - VT = (*RC).getValueTypeNum(0); - } else { - // In multiple RC's - if (VT != (*RC).getValueTypeNum(0)) { - // Types of the RC's do not agree. Return MVT::Other. The - // target is responsible for handling this. - return MVT::Other; - } - } - } - } - return VT; -} - -static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { - return CGP.getSDNodeInfo(Op).getEnumName(); -} - -//===----------------------------------------------------------------------===// -// Node Transformation emitter implementation. -// -void DAGISelEmitter::EmitNodeTransforms(raw_ostream &OS) { - // Walk the pattern fragments, adding them to a map, which sorts them by - // name. - typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy; - NXsByNameTy NXsByName; - - for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end(); - I != E; ++I) - NXsByName.insert(std::make_pair(I->first->getName(), I->second)); - - OS << "\n// Node transformations.\n"; - - for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end(); - I != E; ++I) { - Record *SDNode = I->second.first; - std::string Code = I->second.second; - - if (Code.empty()) continue; // Empty code? Skip it. - - std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName(); - const char *C2 = ClassName == "SDNode" ? "N" : "inN"; - - OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2 - << ") {\n"; - if (ClassName != "SDNode") - OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; - OS << Code << "\n}\n"; - } -} - //===----------------------------------------------------------------------===// // Predicate emitter implementation. // @@ -280,1623 +151,12 @@ void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) { OS << "\n\n"; } - -//===----------------------------------------------------------------------===// -// PatternCodeEmitter implementation. -// -class PatternCodeEmitter { -private: - CodeGenDAGPatterns &CGP; - - // Predicates. - std::string PredicateCheck; - // Pattern cost. - unsigned Cost; - // Instruction selector pattern. - TreePatternNode *Pattern; - // Matched instruction. - TreePatternNode *Instruction; - - // Node to name mapping - std::map<std::string, std::string> VariableMap; - // Name of the folded node which produces a flag. - std::pair<std::string, unsigned> FoldedFlag; - // Names of all the folded nodes which produce chains. - std::vector<std::pair<std::string, unsigned> > FoldedChains; - // Original input chain(s). - std::vector<std::pair<std::string, std::string> > OrigChains; - std::set<std::string> Duplicates; - - /// LSI - Load/Store information. - /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode - /// for each memory access. This facilitates the use of AliasAnalysis in - /// the backend. - std::vector<std::string> LSI; - - /// GeneratedCode - This is the buffer that we emit code to. The first int - /// indicates whether this is an exit predicate (something that should be - /// tested, and if true, the match fails) [when 1], or normal code to emit - /// [when 0], or initialization code to emit [when 2]. - std::vector<std::pair<unsigned, std::string> > &GeneratedCode; - /// GeneratedDecl - This is the set of all SDValue declarations needed for - /// the set of patterns for each top-level opcode. - std::set<std::string> &GeneratedDecl; - /// TargetOpcodes - The target specific opcodes used by the resulting - /// instructions. - std::vector<std::string> &TargetOpcodes; - std::vector<std::string> &TargetVTs; - /// OutputIsVariadic - Records whether the instruction output pattern uses - /// variable_ops. This requires that the Emit function be passed an - /// additional argument to indicate where the input varargs operands - /// begin. - bool &OutputIsVariadic; - /// NumInputRootOps - Records the number of operands the root node of the - /// input pattern has. This information is used in the generated code to - /// pass to Emit functions when variable_ops processing is needed. - unsigned &NumInputRootOps; - - std::string ChainName; - unsigned TmpNo; - unsigned OpcNo; - unsigned VTNo; - - void emitCheck(const std::string &S) { - if (!S.empty()) - GeneratedCode.push_back(std::make_pair(1, S)); - } - void emitCode(const std::string &S) { - if (!S.empty()) - GeneratedCode.push_back(std::make_pair(0, S)); - } - void emitInit(const std::string &S) { - if (!S.empty()) - GeneratedCode.push_back(std::make_pair(2, S)); - } - void emitDecl(const std::string &S) { - assert(!S.empty() && "Invalid declaration"); - GeneratedDecl.insert(S); - } - void emitOpcode(const std::string &Opc) { - TargetOpcodes.push_back(Opc); - OpcNo++; - } - void emitVT(const std::string &VT) { - TargetVTs.push_back(VT); - VTNo++; - } -public: - PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck, - TreePatternNode *pattern, TreePatternNode *instr, - std::vector<std::pair<unsigned, std::string> > &gc, - std::set<std::string> &gd, - std::vector<std::string> &to, - std::vector<std::string> &tv, - bool &oiv, - unsigned &niro) - : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr), - GeneratedCode(gc), GeneratedDecl(gd), - TargetOpcodes(to), TargetVTs(tv), - OutputIsVariadic(oiv), NumInputRootOps(niro), - TmpNo(0), OpcNo(0), VTNo(0) {} - - /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo - /// if the match fails. At this point, we already know that the opcode for N - /// matches, and the SDNode for the result has the RootName specified name. - void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, - const std::string &RootName, const std::string &ChainSuffix, - bool &FoundChain); - - void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, - const std::string &RootName, - const std::string &ChainSuffix, bool &FoundChain); - - /// EmitResultCode - Emit the action for a pattern. Now that it has matched - /// we actually have to build a DAG! - std::vector<std::string> - EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs, - bool InFlagDecled, bool ResNodeDecled, - bool LikeLeaf = false, bool isRoot = false); - - /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' - /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that - /// 'Pat' may be missing types. If we find an unresolved type to add a check - /// for, this returns true otherwise false if Pat has all types. - bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, - const std::string &Prefix, bool isRoot = false) { - // Did we find one? - if (Pat->getExtTypes() != Other->getExtTypes()) { - // Move a type over from 'other' to 'pat'. - Pat->setTypes(Other->getExtTypes()); - // The top level node type is checked outside of the select function. - if (!isRoot) - emitCheck(Prefix + ".getValueType() == " + - getName(Pat->getTypeNum(0))); - return true; - } - - unsigned OpNo = (unsigned)Pat->NodeHasProperty(SDNPHasChain, CGP); - for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) - if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), - Prefix + utostr(OpNo))) - return true; - return false; - } - -private: - /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is - /// being built. - void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, - bool &ChainEmitted, bool &InFlagDecled, - bool &ResNodeDecled, bool isRoot = false) { - const CodeGenTarget &T = CGP.getTargetInfo(); - unsigned OpNo = (unsigned)N->NodeHasProperty(SDNPHasChain, CGP); - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { - TreePatternNode *Child = N->getChild(i); - if (!Child->isLeaf()) { - EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, - InFlagDecled, ResNodeDecled); - } else { - if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { - if (!Child->getName().empty()) { - std::string Name = RootName + utostr(OpNo); - if (Duplicates.find(Name) != Duplicates.end()) - // A duplicate! Do not emit a copy for this node. - continue; - } - - Record *RR = DI->getDef(); - if (RR->isSubClassOf("Register")) { - MVT::SimpleValueType RVT = getRegisterValueType(RR, T); - if (RVT == MVT::Flag) { - if (!InFlagDecled) { - emitCode("SDValue InFlag = " + - getValueName(RootName + utostr(OpNo)) + ";"); - InFlagDecled = true; - } else - emitCode("InFlag = " + - getValueName(RootName + utostr(OpNo)) + ";"); - } else { - if (!ChainEmitted) { - emitCode("SDValue Chain = CurDAG->getEntryNode();"); - ChainName = "Chain"; - ChainEmitted = true; - } - if (!InFlagDecled) { - emitCode("SDValue InFlag(0, 0);"); - InFlagDecled = true; - } - std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; - emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + - ", " + getNodeName(RootName) + "->getDebugLoc()" + - ", " + getQualifiedName(RR) + - ", " + getValueName(RootName + utostr(OpNo)) + - ", InFlag).getNode();"); - ResNodeDecled = true; - emitCode(ChainName + " = SDValue(ResNode, 0);"); - emitCode("InFlag = SDValue(ResNode, 1);"); - } - } - } - } - } - - if (N->NodeHasProperty(SDNPInFlag, CGP)) { - if (!InFlagDecled) { - emitCode("SDValue InFlag = " + getNodeName(RootName) + - "->getOperand(" + utostr(OpNo) + ");"); - InFlagDecled = true; - } else - abort(); - emitCode("InFlag = " + getNodeName(RootName) + - "->getOperand(" + utostr(OpNo) + ");"); - } - } -}; - - -/// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo -/// if the match fails. At this point, we already know that the opcode for N -/// matches, and the SDNode for the result has the RootName specified name. -void PatternCodeEmitter::EmitMatchCode(TreePatternNode *N, TreePatternNode *P, - const std::string &RootName, - const std::string &ChainSuffix, - bool &FoundChain) { - // Save loads/stores matched by a pattern. - if (!N->isLeaf() && N->getName().empty()) { - if (N->NodeHasProperty(SDNPMemOperand, CGP)) - LSI.push_back(getNodeName(RootName)); - } - - bool isRoot = (P == NULL); - // Emit instruction predicates. Each predicate is just a string for now. - if (isRoot) { - // Record input varargs info. - NumInputRootOps = N->getNumChildren(); - emitCheck(PredicateCheck); - } - - if (N->isLeaf()) { - if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { - emitCheck("cast<ConstantSDNode>(" + getNodeName(RootName) + - ")->getSExtValue() == INT64_C(" + - itostr(II->getValue()) + ")"); - return; - } - assert(N->getComplexPatternInfo(CGP) != 0 && - "Cannot match this as a leaf value!"); - } - - // If this node has a name associated with it, capture it in VariableMap. If - // we already saw this in the pattern, emit code to verify dagness. - if (!N->getName().empty()) { - std::string &VarMapEntry = VariableMap[N->getName()]; - if (VarMapEntry.empty()) { - VarMapEntry = RootName; - } else { - // If we get here, this is a second reference to a specific name. Since - // we already have checked that the first reference is valid, we don't - // have to recursively match it, just check that it's the same as the - // previously named thing. - emitCheck(VarMapEntry + " == " + RootName); - return; - } - } - - - // Emit code to load the child nodes and match their contents recursively. - unsigned OpNo = 0; - bool NodeHasChain = N->NodeHasProperty(SDNPHasChain, CGP); - bool HasChain = N->TreeHasProperty(SDNPHasChain, CGP); - if (HasChain) { - if (NodeHasChain) - OpNo = 1; - if (!isRoot) { - // Check if it's profitable to fold the node. e.g. Check for multiple uses - // of actual result? - std::string ParentName(RootName.begin(), RootName.end()-1); - if (!NodeHasChain) { - // If this is just an interior node, check to see if it has a single - // use. If the node has multiple uses and the pattern has a load as - // an operand, then we can't fold the load. - emitCheck(getValueName(RootName) + ".hasOneUse()"); - } else if (!N->isLeaf()) { // ComplexPatterns do their own legality check. - // If the immediate use can somehow reach this node through another - // path, then can't fold it either or it will create a cycle. - // e.g. In the following diagram, XX can reach ld through YY. If - // ld is folded into XX, then YY is both a predecessor and a successor - // of XX. - // - // [ld] - // ^ ^ - // | | - // / \--- - // / [YY] - // | ^ - // [XX]-------| - - // We know we need the check if N's parent is not the root. - bool NeedCheck = P != Pattern; - if (!NeedCheck) { - // If the parent is the root and the node has more than one operand, - // we need to check. - const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator()); - NeedCheck = - P->getOperator() == CGP.get_intrinsic_void_sdnode() || - P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || - P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || - PInfo.getNumOperands() > 1 || - PInfo.hasProperty(SDNPHasChain) || - PInfo.hasProperty(SDNPInFlag) || - PInfo.hasProperty(SDNPOptInFlag); - } - - if (NeedCheck) { - emitCheck("IsProfitableToFold(" + getValueName(RootName) + - ", " + getNodeName(ParentName) + ", N)"); - emitCheck("IsLegalToFold(" + getValueName(RootName) + - ", " + getNodeName(ParentName) + ", N)"); - } else { - // Otherwise, just verify that the node only has a single use. - emitCheck(getValueName(RootName) + ".hasOneUse()"); - } - } - } - - if (NodeHasChain) { - if (FoundChain) { - emitCheck("IsChainCompatible(" + ChainName + ".getNode(), " + - getNodeName(RootName) + ")"); - OrigChains.push_back(std::make_pair(ChainName, - getValueName(RootName))); - } else - FoundChain = true; - ChainName = "Chain" + ChainSuffix; - - if (!N->getComplexPatternInfo(CGP) || - isRoot) - emitInit("SDValue " + ChainName + " = " + getNodeName(RootName) + - "->getOperand(0);"); - } - } - - // If there are node predicates for this, emit the calls. - for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) - emitCheck(N->getPredicateFns()[i] + "(" + getNodeName(RootName) + ")"); - - // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is - // a constant without a predicate fn that has more that one bit set, handle - // this as a special case. This is usually for targets that have special - // handling of certain large constants (e.g. alpha with it's 8/16/32-bit - // handling stuff). Using these instructions is often far more efficient - // than materializing the constant. Unfortunately, both the instcombiner - // and the dag combiner can often infer that bits are dead, and thus drop - // them from the mask in the dag. For example, it might turn 'AND X, 255' - // into 'AND X, 254' if it knows the low bit is set. Emit code that checks - // to handle this. - if (!N->isLeaf() && - (N->getOperator()->getName() == "and" || - N->getOperator()->getName() == "or") && - N->getChild(1)->isLeaf() && - N->getChild(1)->getPredicateFns().empty()) { - if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) { - if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. - emitInit("SDValue " + RootName + "0" + " = " + - getNodeName(RootName) + "->getOperand(" + utostr(0) + ");"); - emitInit("SDValue " + RootName + "1" + " = " + - getNodeName(RootName) + "->getOperand(" + utostr(1) + ");"); - - unsigned NTmp = TmpNo++; - emitCode("ConstantSDNode *Tmp" + utostr(NTmp) + - " = dyn_cast<ConstantSDNode>(" + - getNodeName(RootName + "1") + ");"); - emitCheck("Tmp" + utostr(NTmp)); - const char *MaskPredicate = N->getOperator()->getName() == "or" - ? "CheckOrMask(" : "CheckAndMask("; - emitCheck(MaskPredicate + getValueName(RootName + "0") + - ", Tmp" + utostr(NTmp) + - ", INT64_C(" + itostr(II->getValue()) + "))"); - - EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), - ChainSuffix + utostr(0), FoundChain); - return; - } - } - } - - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { - emitInit("SDValue " + getValueName(RootName + utostr(OpNo)) + " = " + - getNodeName(RootName) + "->getOperand(" + utostr(OpNo) + ");"); - - EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), - ChainSuffix + utostr(OpNo), FoundChain); - } - - // Handle complex patterns. - if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { - std::string Fn = CP->getSelectFunc(); - unsigned NumOps = CP->getNumOperands(); - for (unsigned i = 0; i < NumOps; ++i) { - emitDecl("CPTmp" + RootName + "_" + utostr(i)); - emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";"); - } - if (CP->hasProperty(SDNPHasChain)) { - emitDecl("CPInChain"); - emitDecl("Chain" + ChainSuffix); - emitCode("SDValue CPInChain;"); - emitCode("SDValue Chain" + ChainSuffix + ";"); - } - - std::string Code = Fn + "(N, "; // always pass in the root. - Code += getValueName(RootName); - for (unsigned i = 0; i < NumOps; i++) - Code += ", CPTmp" + RootName + "_" + utostr(i); - if (CP->hasProperty(SDNPHasChain)) { - ChainName = "Chain" + ChainSuffix; - Code += ", CPInChain, " + ChainName; - } - emitCheck(Code + ")"); - } -} - -void PatternCodeEmitter::EmitChildMatchCode(TreePatternNode *Child, - TreePatternNode *Parent, - const std::string &RootName, - const std::string &ChainSuffix, - bool &FoundChain) { - if (!Child->isLeaf()) { - // If it's not a leaf, recursively match. - const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator()); - emitCheck(getNodeName(RootName) + "->getOpcode() == " + - CInfo.getEnumName()); - EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); - bool HasChain = false; - if (Child->NodeHasProperty(SDNPHasChain, CGP)) { - HasChain = true; - FoldedChains.push_back(std::make_pair(getValueName(RootName), - CInfo.getNumResults())); - } - if (Child->NodeHasProperty(SDNPOutFlag, CGP)) { - assert(FoldedFlag.first == "" && FoldedFlag.second == 0 && - "Pattern folded multiple nodes which produce flags?"); - FoldedFlag = std::make_pair(getValueName(RootName), - CInfo.getNumResults() + (unsigned)HasChain); - } - return; - } - - if (const ComplexPattern *CP = Child->getComplexPatternInfo(CGP)) { - EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); - bool HasChain = false; - - if (Child->NodeHasProperty(SDNPHasChain, CGP)) { - HasChain = true; - const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator()); - FoldedChains.push_back(std::make_pair("CPInChain", - PInfo.getNumResults())); - } - if (Child->NodeHasProperty(SDNPOutFlag, CGP)) { - assert(FoldedFlag.first == "" && FoldedFlag.second == 0 && - "Pattern folded multiple nodes which produce flags?"); - FoldedFlag = std::make_pair(getValueName(RootName), - CP->getNumOperands() + (unsigned)HasChain); - } - return; - } - - // If this child has a name associated with it, capture it in VarMap. If - // we already saw this in the pattern, emit code to verify dagness. - if (!Child->getName().empty()) { - std::string &VarMapEntry = VariableMap[Child->getName()]; - if (VarMapEntry.empty()) { - VarMapEntry = getValueName(RootName); - } else { - // If we get here, this is a second reference to a specific name. - // Since we already have checked that the first reference is valid, - // we don't have to recursively match it, just check that it's the - // same as the previously named thing. - emitCheck(VarMapEntry + " == " + getValueName(RootName)); - Duplicates.insert(getValueName(RootName)); - return; - } - } - - // Handle leaves of various types. - if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { - Record *LeafRec = DI->getDef(); - if (LeafRec->isSubClassOf("RegisterClass") || - LeafRec->isSubClassOf("PointerLikeRegClass")) { - // Handle register references. Nothing to do here. - } else if (LeafRec->isSubClassOf("Register")) { - // Handle register references. - } else if (LeafRec->getName() == "srcvalue") { - // Place holder for SRCVALUE nodes. Nothing to do here. - } else if (LeafRec->isSubClassOf("ValueType")) { - // Make sure this is the specified value type. - emitCheck("cast<VTSDNode>(" + getNodeName(RootName) + - ")->getVT() == MVT::" + LeafRec->getName()); - } else if (LeafRec->isSubClassOf("CondCode")) { - // Make sure this is the specified cond code. - emitCheck("cast<CondCodeSDNode>(" + getNodeName(RootName) + - ")->get() == ISD::" + LeafRec->getName()); - } else { -#ifndef NDEBUG - Child->dump(); - errs() << " "; -#endif - assert(0 && "Unknown leaf type!"); - } - - // If there are node predicates for this, emit the calls. - for (unsigned i = 0, e = Child->getPredicateFns().size(); i != e; ++i) - emitCheck(Child->getPredicateFns()[i] + "(" + getNodeName(RootName) + - ")"); - return; - } - - if (IntInit *II = dynamic_cast<IntInit*>(Child->getLeafValue())) { - unsigned NTmp = TmpNo++; - emitCode("ConstantSDNode *Tmp"+ utostr(NTmp) + - " = dyn_cast<ConstantSDNode>("+ - getNodeName(RootName) + ");"); - emitCheck("Tmp" + utostr(NTmp)); - unsigned CTmp = TmpNo++; - emitCode("int64_t CN"+ utostr(CTmp) + - " = Tmp" + utostr(NTmp) + "->getSExtValue();"); - emitCheck("CN" + utostr(CTmp) + " == " - "INT64_C(" +itostr(II->getValue()) + ")"); - return; - } -#ifndef NDEBUG - Child->dump(); -#endif - assert(0 && "Unknown leaf type!"); -} - -/// EmitResultCode - Emit the action for a pattern. Now that it has matched -/// we actually have to build a DAG! -std::vector<std::string> -PatternCodeEmitter::EmitResultCode(TreePatternNode *N, - std::vector<Record*> DstRegs, - bool InFlagDecled, bool ResNodeDecled, - bool LikeLeaf, bool isRoot) { - // List of arguments of getMachineNode() or SelectNodeTo(). - std::vector<std::string> NodeOps; - // This is something selected from the pattern we matched. - if (!N->getName().empty()) { - const std::string &VarName = N->getName(); - std::string Val = VariableMap[VarName]; - if (Val.empty()) { - errs() << "Variable '" << VarName << " referenced but not defined " - << "and not caught earlier!\n"; - abort(); - } - - unsigned ResNo = TmpNo++; - if (!N->isLeaf() && N->getOperator()->getName() == "imm") { - assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); - std::string CastType; - std::string TmpVar = "Tmp" + utostr(ResNo); - switch (N->getTypeNum(0)) { - default: - errs() << "Cannot handle " << getEnumName(N->getTypeNum(0)) - << " type as an immediate constant. Aborting\n"; - abort(); - case MVT::i1: CastType = "bool"; break; - case MVT::i8: CastType = "unsigned char"; break; - case MVT::i16: CastType = "unsigned short"; break; - case MVT::i32: CastType = "unsigned"; break; - case MVT::i64: CastType = "uint64_t"; break; - } - emitCode("SDValue " + TmpVar + - " = CurDAG->getTargetConstant(((" + CastType + - ") cast<ConstantSDNode>(" + Val + ")->getZExtValue()), " + - getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back(getValueName(TmpVar)); - } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") { - assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); - std::string TmpVar = "Tmp" + utostr(ResNo); - emitCode("SDValue " + TmpVar + - " = CurDAG->getTargetConstantFP(*cast<ConstantFPSDNode>(" + - Val + ")->getConstantFPValue(), cast<ConstantFPSDNode>(" + - Val + ")->getValueType(0));"); - NodeOps.push_back(getValueName(TmpVar)); - } else if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { - for (unsigned i = 0; i < CP->getNumOperands(); ++i) - NodeOps.push_back(getValueName("CPTmp" + Val + "_" + utostr(i))); - } else { - // This node, probably wrapped in a SDNodeXForm, behaves like a leaf - // node even if it isn't one. Don't select it. - if (!LikeLeaf) { - if (isRoot && N->isLeaf()) { - emitCode("ReplaceUses(SDValue(N, 0), " + Val + ");"); - emitCode("return NULL;"); - } - } - NodeOps.push_back(getValueName(Val)); - } - return NodeOps; - } - if (N->isLeaf()) { - // If this is an explicit register reference, handle it. - if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { - unsigned ResNo = TmpNo++; - if (DI->getDef()->isSubClassOf("Register")) { - emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + - getQualifiedName(DI->getDef()) + ", " + - getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); - return NodeOps; - } else if (DI->getDef()->getName() == "zero_reg") { - emitCode("SDValue Tmp" + utostr(ResNo) + - " = CurDAG->getRegister(0, " + - getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); - return NodeOps; - } else if (DI->getDef()->isSubClassOf("RegisterClass")) { - // Handle a reference to a register class. This is used - // in COPY_TO_SUBREG instructions. - emitCode("SDValue Tmp" + utostr(ResNo) + - " = CurDAG->getTargetConstant(" + - getQualifiedName(DI->getDef()) + "RegClassID, " + - "MVT::i32);"); - NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); - return NodeOps; - } - } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { - unsigned ResNo = TmpNo++; - assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); - emitCode("SDValue Tmp" + utostr(ResNo) + - " = CurDAG->getTargetConstant(0x" + - utohexstr((uint64_t) II->getValue()) + - "ULL, " + getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back(getValueName("Tmp" + utostr(ResNo))); - return NodeOps; - } - -#ifndef NDEBUG - N->dump(); -#endif - assert(0 && "Unknown leaf type!"); - return NodeOps; - } - - Record *Op = N->getOperator(); - if (Op->isSubClassOf("Instruction")) { - const CodeGenTarget &CGT = CGP.getTargetInfo(); - CodeGenInstruction &II = CGT.getInstruction(Op->getName()); - const DAGInstruction &Inst = CGP.getInstruction(Op); - const TreePattern *InstPat = Inst.getPattern(); - // FIXME: Assume actual pattern comes before "implicit". - TreePatternNode *InstPatNode = - isRoot ? (InstPat ? InstPat->getTree(0) : Pattern) - : (InstPat ? InstPat->getTree(0) : NULL); - if (InstPatNode && !InstPatNode->isLeaf() && - InstPatNode->getOperator()->getName() == "set") { - InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); - } - bool IsVariadic = isRoot && II.isVariadic; - // FIXME: fix how we deal with physical register operands. - bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; - bool HasImpResults = isRoot && DstRegs.size() > 0; - bool NodeHasOptInFlag = isRoot && - Pattern->TreeHasProperty(SDNPOptInFlag, CGP); - bool NodeHasInFlag = isRoot && - Pattern->TreeHasProperty(SDNPInFlag, CGP); - bool NodeHasOutFlag = isRoot && - Pattern->TreeHasProperty(SDNPOutFlag, CGP); - bool NodeHasChain = InstPatNode && - InstPatNode->TreeHasProperty(SDNPHasChain, CGP); - bool InputHasChain = isRoot && Pattern->NodeHasProperty(SDNPHasChain, CGP); - unsigned NumResults = Inst.getNumResults(); - unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0; - - // Record output varargs info. - OutputIsVariadic = IsVariadic; - - if (NodeHasOptInFlag) { - emitCode("bool HasInFlag = " - "(N->getOperand(N->getNumOperands()-1).getValueType() == " - "MVT::Flag);"); - } - if (IsVariadic) - emitCode("SmallVector<SDValue, 8> Ops" + utostr(OpcNo) + ";"); - - // How many results is this pattern expected to produce? - unsigned NumPatResults = 0; - for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { - MVT::SimpleValueType VT = Pattern->getTypeNum(i); - if (VT != MVT::isVoid && VT != MVT::Flag) - NumPatResults++; - } - - if (OrigChains.size() > 0) { - // The original input chain is being ignored. If it is not just - // pointing to the op that's being folded, we should create a - // TokenFactor with it and the chain of the folded op as the new chain. - // We could potentially be doing multiple levels of folding, in that - // case, the TokenFactor can have more operands. - emitCode("SmallVector<SDValue, 8> InChains;"); - for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { - emitCode("if (" + OrigChains[i].first + ".getNode() != " + - OrigChains[i].second + ".getNode()) {"); - emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); - emitCode("}"); - } - emitCode("InChains.push_back(" + ChainName + ");"); - emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, " - "N->getDebugLoc(), MVT::Other, " - "&InChains[0], InChains.size());"); - if (GenDebug) { - emitCode("CurDAG->setSubgraphColor(" + ChainName + - ".getNode(), \"yellow\");"); - emitCode("CurDAG->setSubgraphColor(" + ChainName + - ".getNode(), \"black\");"); - } - } - - // Loop over all of the operands of the instruction pattern, emitting code - // to fill them all in. The node 'N' usually has number children equal to - // the number of input operands of the instruction. However, in cases - // where there are predicate operands for an instruction, we need to fill - // in the 'execute always' values. Match up the node operands to the - // instruction operands to do this. - std::vector<std::string> AllOps; - for (unsigned ChildNo = 0, InstOpNo = NumResults; - InstOpNo != II.OperandList.size(); ++InstOpNo) { - std::vector<std::string> Ops; - - // Determine what to emit for this operand. - Record *OperandNode = II.OperandList[InstOpNo].Rec; - if ((OperandNode->isSubClassOf("PredicateOperand") || - OperandNode->isSubClassOf("OptionalDefOperand")) && - !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { - // This is a predicate or optional def operand; emit the - // 'default ops' operands. - const DAGDefaultOperand &DefaultOp = - CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec); - for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) { - Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs, - InFlagDecled, ResNodeDecled); - AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); - } - } else { - // Otherwise this is a normal operand or a predicate operand without - // 'execute always'; emit it. - Ops = EmitResultCode(N->getChild(ChildNo), DstRegs, - InFlagDecled, ResNodeDecled); - AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); - ++ChildNo; - } - } - - // Emit all the chain and CopyToReg stuff. - bool ChainEmitted = NodeHasChain; - if (NodeHasInFlag || HasImpInputs) - EmitInFlagSelectCode(Pattern, "N", ChainEmitted, - InFlagDecled, ResNodeDecled, true); - if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { - if (!InFlagDecled) { - emitCode("SDValue InFlag(0, 0);"); - InFlagDecled = true; - } - if (NodeHasOptInFlag) { - emitCode("if (HasInFlag) {"); - emitCode(" InFlag = N->getOperand(N->getNumOperands()-1);"); - emitCode("}"); - } - } - - unsigned ResNo = TmpNo++; - - unsigned OpsNo = OpcNo; - std::string CodePrefix; - bool ChainAssignmentNeeded = NodeHasChain && !isRoot; - std::deque<std::string> After; - std::string NodeName; - if (!isRoot) { - NodeName = "Tmp" + utostr(ResNo); - CodePrefix = "SDValue " + NodeName + "("; - } else { - NodeName = "ResNode"; - if (!ResNodeDecled) { - CodePrefix = "SDNode *" + NodeName + " = "; - ResNodeDecled = true; - } else - CodePrefix = NodeName + " = "; - } - - std::string Code = "Opc" + utostr(OpcNo); - - if (!isRoot || (InputHasChain && !NodeHasChain)) - // For call to "getMachineNode()". - Code += ", N->getDebugLoc()"; - - emitOpcode(II.Namespace + "::" + II.TheDef->getName()); - - // Output order: results, chain, flags - // Result types. - if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { - Code += ", VT" + utostr(VTNo); - emitVT(getEnumName(N->getTypeNum(0))); - } - // Add types for implicit results in physical registers, scheduler will - // care of adding copyfromreg nodes. - for (unsigned i = 0; i < NumDstRegs; i++) { - Record *RR = DstRegs[i]; - if (RR->isSubClassOf("Register")) { - MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT); - Code += ", " + getEnumName(RVT); - } - } - if (NodeHasChain) - Code += ", MVT::Other"; - if (NodeHasOutFlag) - Code += ", MVT::Flag"; - - // Inputs. - if (IsVariadic) { - for (unsigned i = 0, e = AllOps.size(); i != e; ++i) - emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); - AllOps.clear(); - - // Figure out whether any operands at the end of the op list are not - // part of the variable section. - std::string EndAdjust; - if (NodeHasInFlag || HasImpInputs) - EndAdjust = "-1"; // Always has one flag. - else if (NodeHasOptInFlag) - EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. - - emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) + - ", e = N->getNumOperands()" + EndAdjust + "; i != e; ++i) {"); - - emitCode(" Ops" + utostr(OpsNo) + ".push_back(N->getOperand(i));"); - emitCode("}"); - } - - // Populate MemRefs with entries for each memory accesses covered by - // this pattern. - if (isRoot && !LSI.empty()) { - std::string MemRefs = "MemRefs" + utostr(OpsNo); - emitCode("MachineSDNode::mmo_iterator " + MemRefs + " = " - "MF->allocateMemRefsArray(" + utostr(LSI.size()) + ");"); - for (unsigned i = 0, e = LSI.size(); i != e; ++i) - emitCode(MemRefs + "[" + utostr(i) + "] = " - "cast<MemSDNode>(" + LSI[i] + ")->getMemOperand();"); - After.push_back("cast<MachineSDNode>(ResNode)->setMemRefs(" + - MemRefs + ", " + MemRefs + " + " + utostr(LSI.size()) + - ");"); - } - - if (NodeHasChain) { - if (IsVariadic) - emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); - else - AllOps.push_back(ChainName); - } - - if (IsVariadic) { - if (NodeHasInFlag || HasImpInputs) - emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); - else if (NodeHasOptInFlag) { - emitCode("if (HasInFlag)"); - emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); - } - Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + - ".size()"; - } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) - AllOps.push_back("InFlag"); - - unsigned NumOps = AllOps.size(); - if (NumOps) { - if (!NodeHasOptInFlag && NumOps < 4) { - for (unsigned i = 0; i != NumOps; ++i) - Code += ", " + AllOps[i]; - } else { - std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { "; - for (unsigned i = 0; i != NumOps; ++i) { - OpsCode += AllOps[i]; - if (i != NumOps-1) - OpsCode += ", "; - } - emitCode(OpsCode + " };"); - Code += ", Ops" + utostr(OpsNo) + ", "; - if (NodeHasOptInFlag) { - Code += "HasInFlag ? "; - Code += utostr(NumOps) + " : " + utostr(NumOps-1); - } else - Code += utostr(NumOps); - } - } - - if (!isRoot) - Code += "), 0"; - - std::vector<std::string> ReplaceFroms; - std::vector<std::string> ReplaceTos; - if (!isRoot) { - NodeOps.push_back("Tmp" + utostr(ResNo)); - } else { - - if (NodeHasOutFlag) { - if (!InFlagDecled) { - After.push_back("SDValue InFlag(ResNode, " + - utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + - ");"); - InFlagDecled = true; - } else - After.push_back("InFlag = SDValue(ResNode, " + - utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + - ");"); - } - - for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) { - ReplaceFroms.push_back("SDValue(" + - FoldedChains[j].first + ".getNode(), " + - utostr(FoldedChains[j].second) + - ")"); - ReplaceTos.push_back("SDValue(ResNode, " + - utostr(NumResults+NumDstRegs) + ")"); - } - - if (NodeHasOutFlag) { - if (FoldedFlag.first != "") { - ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " + - utostr(FoldedFlag.second) + ")"); - ReplaceTos.push_back("InFlag"); - } else { - assert(Pattern->NodeHasProperty(SDNPOutFlag, CGP)); - ReplaceFroms.push_back("SDValue(N, " + - utostr(NumPatResults + (unsigned)InputHasChain) - + ")"); - ReplaceTos.push_back("InFlag"); - } - } - - if (!ReplaceFroms.empty() && InputHasChain) { - ReplaceFroms.push_back("SDValue(N, " + - utostr(NumPatResults) + ")"); - ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " + - ChainName + ".getResNo()" + ")"); - ChainAssignmentNeeded |= NodeHasChain; - } - - // User does not expect the instruction would produce a chain! - if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { - ; - } else if (InputHasChain && !NodeHasChain) { - // One of the inner node produces a chain. - assert(!NodeHasOutFlag && "Node has flag but not chain!"); - ReplaceFroms.push_back("SDValue(N, " + - utostr(NumPatResults) + ")"); - ReplaceTos.push_back(ChainName); - } - } - - if (ChainAssignmentNeeded) { - // Remember which op produces the chain. - std::string ChainAssign; - if (!isRoot) - ChainAssign = ChainName + " = SDValue(" + NodeName + - ".getNode(), " + utostr(NumResults+NumDstRegs) + ");"; - else - ChainAssign = ChainName + " = SDValue(" + NodeName + - ", " + utostr(NumResults+NumDstRegs) + ");"; - - After.push_front(ChainAssign); - } - - if (ReplaceFroms.size() == 1) { - After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " + - ReplaceTos[0] + ");"); - } else if (!ReplaceFroms.empty()) { - After.push_back("const SDValue Froms[] = {"); - for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) - After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : "")); - After.push_back("};"); - After.push_back("const SDValue Tos[] = {"); - for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) - After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : "")); - After.push_back("};"); - After.push_back("ReplaceUses(Froms, Tos, " + - itostr(ReplaceFroms.size()) + ");"); - } - - // We prefer to use SelectNodeTo since it avoids allocation when - // possible and it avoids CSE map recalculation for the node's - // users, however it's tricky to use in a non-root context. - // - // We also don't use SelectNodeTo if the pattern replacement is being - // used to jettison a chain result, since morphing the node in place - // would leave users of the chain dangling. - // - if (!isRoot || (InputHasChain && !NodeHasChain)) { - Code = "CurDAG->getMachineNode(" + Code; - } else { - Code = "CurDAG->SelectNodeTo(N, " + Code; - } - if (isRoot) { - if (After.empty()) - CodePrefix = "return "; - else - After.push_back("return ResNode;"); - } - - emitCode(CodePrefix + Code + ");"); - - if (GenDebug) { - if (!isRoot) { - emitCode("CurDAG->setSubgraphColor(" + - NodeName +".getNode(), \"yellow\");"); - emitCode("CurDAG->setSubgraphColor(" + - NodeName +".getNode(), \"black\");"); - } else { - emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"yellow\");"); - emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"black\");"); - } - } - - for (unsigned i = 0, e = After.size(); i != e; ++i) - emitCode(After[i]); - - return NodeOps; - } - if (Op->isSubClassOf("SDNodeXForm")) { - assert(N->getNumChildren() == 1 && "node xform should have one child!"); - // PatLeaf node - the operand may or may not be a leaf node. But it should - // behave like one. - std::vector<std::string> Ops = - EmitResultCode(N->getChild(0), DstRegs, InFlagDecled, - ResNodeDecled, true); - unsigned ResNo = TmpNo++; - emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() - + "(" + Ops.back() + ".getNode());"); - NodeOps.push_back("Tmp" + utostr(ResNo)); - if (isRoot) - emitCode("return Tmp" + utostr(ResNo) + ".getNode();"); - return NodeOps; - } - - N->dump(); - errs() << "\n"; - throw std::string("Unknown node in result pattern!"); -} - - -/// EmitCodeForPattern - Given a pattern to match, emit code to the specified -/// stream to match the pattern, and generate the code for the match if it -/// succeeds. Returns true if the pattern is not guaranteed to match. -void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern, - std::vector<std::pair<unsigned, std::string> > &GeneratedCode, - std::set<std::string> &GeneratedDecl, - std::vector<std::string> &TargetOpcodes, - std::vector<std::string> &TargetVTs, - bool &OutputIsVariadic, - unsigned &NumInputRootOps) { - OutputIsVariadic = false; - NumInputRootOps = 0; - - PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(), - Pattern.getSrcPattern(), Pattern.getDstPattern(), - GeneratedCode, GeneratedDecl, - TargetOpcodes, TargetVTs, - OutputIsVariadic, NumInputRootOps); - - // Emit the matcher, capturing named arguments in VariableMap. - bool FoundChain = false; - Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); - - // TP - Get *SOME* tree pattern, we don't care which. It is only used for - // diagnostics, which we know are impossible at this point. - TreePattern &TP = *CGP.pf_begin()->second; - - // At this point, we know that we structurally match the pattern, but the - // types of the nodes may not match. Figure out the fewest number of type - // comparisons we need to emit. For example, if there is only one integer - // type supported by a target, there should be no type comparisons at all for - // integer patterns! - // - // To figure out the fewest number of type checks needed, clone the pattern, - // remove the types, then perform type inference on the pattern as a whole. - // If there are unresolved types, emit an explicit check for those types, - // apply the type to the tree, then rerun type inference. Iterate until all - // types are resolved. - // - TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); - Pat->RemoveAllTypes(); - - do { - // Resolve/propagate as many types as possible. - try { - bool MadeChange = true; - while (MadeChange) - MadeChange = Pat->ApplyTypeConstraints(TP, - true/*Ignore reg constraints*/); - } catch (...) { - assert(0 && "Error: could not find consistent types for something we" - " already decided was ok!"); - abort(); - } - - // Insert a check for an unresolved type and add it to the tree. If we find - // an unresolved type to add a check for, this returns true and we iterate, - // otherwise we are done. - } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); - - Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(), - false, false, false, true); - delete Pat; -} - -/// EraseCodeLine - Erase one code line from all of the patterns. If removing -/// a line causes any of them to be empty, remove them and return true when -/// done. -static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*, - std::vector<std::pair<unsigned, std::string> > > > - &Patterns) { - bool ErasedPatterns = false; - for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { - Patterns[i].second.pop_back(); - if (Patterns[i].second.empty()) { - Patterns.erase(Patterns.begin()+i); - --i; --e; - ErasedPatterns = true; - } - } - return ErasedPatterns; -} - -/// EmitPatterns - Emit code for at least one pattern, but try to group common -/// code together between the patterns. -void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*, - std::vector<std::pair<unsigned, std::string> > > > - &Patterns, unsigned Indent, - raw_ostream &OS) { - typedef std::pair<unsigned, std::string> CodeLine; - typedef std::vector<CodeLine> CodeList; - typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList; - - if (Patterns.empty()) return; - - // Figure out how many patterns share the next code line. Explicitly copy - // FirstCodeLine so that we don't invalidate a reference when changing - // Patterns. - const CodeLine FirstCodeLine = Patterns.back().second.back(); - unsigned LastMatch = Patterns.size()-1; - while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) - --LastMatch; - - // If not all patterns share this line, split the list into two pieces. The - // first chunk will use this line, the second chunk won't. - if (LastMatch != 0) { - PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); - PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); - - // FIXME: Emit braces? - if (Shared.size() == 1) { - const PatternToMatch &Pattern = *Shared.back().first; - OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; - Pattern.getSrcPattern()->print(OS); - OS << "\n" << std::string(Indent, ' ') << "// Emits: "; - Pattern.getDstPattern()->print(OS); - OS << "\n"; - unsigned AddedComplexity = Pattern.getAddedComplexity(); - OS << std::string(Indent, ' ') << "// Pattern complexity = " - << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity - << " cost = " - << getResultPatternCost(Pattern.getDstPattern(), CGP) - << " size = " - << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; - } - if (FirstCodeLine.first != 1) { - OS << std::string(Indent, ' ') << "{\n"; - Indent += 2; - } - EmitPatterns(Shared, Indent, OS); - if (FirstCodeLine.first != 1) { - Indent -= 2; - OS << std::string(Indent, ' ') << "}\n"; - } - - if (Other.size() == 1) { - const PatternToMatch &Pattern = *Other.back().first; - OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; - Pattern.getSrcPattern()->print(OS); - OS << "\n" << std::string(Indent, ' ') << "// Emits: "; - Pattern.getDstPattern()->print(OS); - OS << "\n"; - unsigned AddedComplexity = Pattern.getAddedComplexity(); - OS << std::string(Indent, ' ') << "// Pattern complexity = " - << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity - << " cost = " - << getResultPatternCost(Pattern.getDstPattern(), CGP) - << " size = " - << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; - } - EmitPatterns(Other, Indent, OS); - return; - } - - // Remove this code from all of the patterns that share it. - bool ErasedPatterns = EraseCodeLine(Patterns); - - bool isPredicate = FirstCodeLine.first == 1; - - // Otherwise, every pattern in the list has this line. Emit it. - if (!isPredicate) { - // Normal code. - OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; - } else { - OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; - - // If the next code line is another predicate, and if all of the pattern - // in this group share the same next line, emit it inline now. Do this - // until we run out of common predicates. - while (!ErasedPatterns && Patterns.back().second.back().first == 1) { - // Check that all of the patterns in Patterns end with the same predicate. - bool AllEndWithSamePredicate = true; - for (unsigned i = 0, e = Patterns.size(); i != e; ++i) - if (Patterns[i].second.back() != Patterns.back().second.back()) { - AllEndWithSamePredicate = false; - break; - } - // If all of the predicates aren't the same, we can't share them. - if (!AllEndWithSamePredicate) break; - - // Otherwise we can. Emit it shared now. - OS << " &&\n" << std::string(Indent+4, ' ') - << Patterns.back().second.back().second; - ErasedPatterns = EraseCodeLine(Patterns); - } - - OS << ") {\n"; - Indent += 2; - } - - EmitPatterns(Patterns, Indent, OS); - - if (isPredicate) - OS << std::string(Indent-2, ' ') << "}\n"; -} - -static std::string getLegalCName(std::string OpName) { - std::string::size_type pos = OpName.find("::"); - if (pos != std::string::npos) - OpName.replace(pos, 2, "_"); - return OpName; -} - -void DAGISelEmitter::EmitInstructionSelector(raw_ostream &OS) { - const CodeGenTarget &Target = CGP.getTargetInfo(); - - // Get the namespace to insert instructions into. - std::string InstNS = Target.getInstNamespace(); - if (!InstNS.empty()) InstNS += "::"; - - // Group the patterns by their top-level opcodes. - std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode; - // All unique target node emission functions. - std::map<std::string, unsigned> EmitFunctions; - for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), - E = CGP.ptm_end(); I != E; ++I) { - const PatternToMatch &Pattern = *I; - TreePatternNode *Node = Pattern.getSrcPattern(); - if (!Node->isLeaf()) { - PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)]. - push_back(&Pattern); - } else { - const ComplexPattern *CP; - if (dynamic_cast<IntInit*>(Node->getLeafValue())) { - PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)]. - push_back(&Pattern); - } else if ((CP = Node->getComplexPatternInfo(CGP))) { - std::vector<Record*> OpNodes = CP->getRootNodes(); - for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { - PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)] - .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(), - &Pattern); - } - } else { - errs() << "Unrecognized opcode '"; - Node->dump(); - errs() << "' on tree pattern '"; - errs() << Pattern.getDstPattern()->getOperator()->getName() << "'!\n"; - exit(1); - } - } - } - - // For each opcode, there might be multiple select functions, one per - // ValueType of the node (or its first operand if it doesn't produce a - // non-chain result. - std::map<std::string, std::vector<std::string> > OpcodeVTMap; - - // Emit one Select_* method for each top-level opcode. We do this instead of - // emitting one giant switch statement to support compilers where this will - // result in the recursive functions taking less stack space. - for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator - PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); - PBOI != E; ++PBOI) { - const std::string &OpName = PBOI->first; - std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second; - assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); - - // Split them into groups by type. - std::map<MVT::SimpleValueType, - std::vector<const PatternToMatch*> > PatternsByType; - for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { - const PatternToMatch *Pat = PatternsOfOp[i]; - TreePatternNode *SrcPat = Pat->getSrcPattern(); - PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat); - } - - for (std::map<MVT::SimpleValueType, - std::vector<const PatternToMatch*> >::iterator - II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; - ++II) { - MVT::SimpleValueType OpVT = II->first; - std::vector<const PatternToMatch*> &Patterns = II->second; - typedef std::pair<unsigned, std::string> CodeLine; - typedef std::vector<CodeLine> CodeList; - typedef CodeList::iterator CodeListI; - - std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns; - std::vector<std::vector<std::string> > PatternOpcodes; - std::vector<std::vector<std::string> > PatternVTs; - std::vector<std::set<std::string> > PatternDecls; - std::vector<bool> OutputIsVariadicFlags; - std::vector<unsigned> NumInputRootOpsCounts; - for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { - CodeList GeneratedCode; - std::set<std::string> GeneratedDecl; - std::vector<std::string> TargetOpcodes; - std::vector<std::string> TargetVTs; - bool OutputIsVariadic; - unsigned NumInputRootOps; - GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, - TargetOpcodes, TargetVTs, - OutputIsVariadic, NumInputRootOps); - CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); - PatternDecls.push_back(GeneratedDecl); - PatternOpcodes.push_back(TargetOpcodes); - PatternVTs.push_back(TargetVTs); - OutputIsVariadicFlags.push_back(OutputIsVariadic); - NumInputRootOpsCounts.push_back(NumInputRootOps); - } - - // Factor target node emission code (emitted by EmitResultCode) into - // separate functions. Uniquing and share them among all instruction - // selection routines. - for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { - CodeList &GeneratedCode = CodeForPatterns[i].second; - std::vector<std::string> &TargetOpcodes = PatternOpcodes[i]; - std::vector<std::string> &TargetVTs = PatternVTs[i]; - std::set<std::string> Decls = PatternDecls[i]; - bool OutputIsVariadic = OutputIsVariadicFlags[i]; - unsigned NumInputRootOps = NumInputRootOpsCounts[i]; - std::vector<std::string> AddedInits; - int CodeSize = (int)GeneratedCode.size(); - int LastPred = -1; - for (int j = CodeSize-1; j >= 0; --j) { - if (LastPred == -1 && GeneratedCode[j].first == 1) - LastPred = j; - else if (LastPred != -1 && GeneratedCode[j].first == 2) - AddedInits.push_back(GeneratedCode[j].second); - } - - std::string CalleeCode = "(SDNode *N"; - std::string CallerCode = "(N"; - for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { - CalleeCode += ", unsigned Opc" + utostr(j); - CallerCode += ", " + TargetOpcodes[j]; - } - for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { - CalleeCode += ", MVT::SimpleValueType VT" + utostr(j); - CallerCode += ", " + TargetVTs[j]; - } - for (std::set<std::string>::iterator - I = Decls.begin(), E = Decls.end(); I != E; ++I) { - std::string Name = *I; - CalleeCode += ", SDValue &" + Name; - CallerCode += ", " + Name; - } - - if (OutputIsVariadic) { - CalleeCode += ", unsigned NumInputRootOps"; - CallerCode += ", " + utostr(NumInputRootOps); - } - - CallerCode += ");"; - CalleeCode += ") {\n"; - - for (std::vector<std::string>::const_reverse_iterator - I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) - CalleeCode += " " + *I + "\n"; - - for (int j = LastPred+1; j < CodeSize; ++j) - CalleeCode += " " + GeneratedCode[j].second + "\n"; - for (int j = LastPred+1; j < CodeSize; ++j) - GeneratedCode.pop_back(); - CalleeCode += "}\n"; - - // Uniquing the emission routines. - unsigned EmitFuncNum; - std::map<std::string, unsigned>::iterator EFI = - EmitFunctions.find(CalleeCode); - if (EFI != EmitFunctions.end()) { - EmitFuncNum = EFI->second; - } else { - EmitFuncNum = EmitFunctions.size(); - EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); - // Prevent emission routines from being inlined to reduce selection - // routines stack frame sizes. - OS << "DISABLE_INLINE "; - OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; - } - - // Replace the emission code within selection routines with calls to the - // emission functions. - if (GenDebug) - GeneratedCode.push_back(std::make_pair(0, - "CurDAG->setSubgraphColor(N, \"red\");")); - CallerCode = "SDNode *Result = Emit_" + utostr(EmitFuncNum) +CallerCode; - GeneratedCode.push_back(std::make_pair(3, CallerCode)); - if (GenDebug) { - GeneratedCode.push_back(std::make_pair(0, "if(Result) {")); - GeneratedCode.push_back(std::make_pair(0, - " CurDAG->setSubgraphColor(Result, \"yellow\");")); - GeneratedCode.push_back(std::make_pair(0, - " CurDAG->setSubgraphColor(Result, \"black\");")); - GeneratedCode.push_back(std::make_pair(0, "}")); - } - GeneratedCode.push_back(std::make_pair(0, "return Result;")); - } - - // Print function. - std::string OpVTStr; - if (OpVT == MVT::iPTR) { - OpVTStr = "_iPTR"; - } else if (OpVT == MVT::iPTRAny) { - OpVTStr = "_iPTRAny"; - } else if (OpVT == MVT::isVoid) { - // Nodes with a void result actually have a first result type of either - // Other (a chain) or Flag. Since there is no one-to-one mapping from - // void to this case, we handle it specially here. - } else { - OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' - } - std::map<std::string, std::vector<std::string> >::iterator OpVTI = - OpcodeVTMap.find(OpName); - if (OpVTI == OpcodeVTMap.end()) { - std::vector<std::string> VTSet; - VTSet.push_back(OpVTStr); - OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); - } else - OpVTI->second.push_back(OpVTStr); - - // We want to emit all of the matching code now. However, we want to emit - // the matches in order of minimal cost. Sort the patterns so the least - // cost one is at the start. - std::stable_sort(CodeForPatterns.begin(), CodeForPatterns.end(), - PatternSortingPredicate(CGP)); - - // Scan the code to see if all of the patterns are reachable and if it is - // possible that the last one might not match. - bool mightNotMatch = true; - for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { - CodeList &GeneratedCode = CodeForPatterns[i].second; - mightNotMatch = false; - - for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { - if (GeneratedCode[j].first == 1) { // predicate. - mightNotMatch = true; - break; - } - } - - // If this pattern definitely matches, and if it isn't the last one, the - // patterns after it CANNOT ever match. Error out. - if (mightNotMatch == false && i != CodeForPatterns.size()-1) { - errs() << "Pattern '"; - CodeForPatterns[i].first->getSrcPattern()->print(errs()); - errs() << "' is impossible to select!\n"; - exit(1); - } - } - - // Loop through and reverse all of the CodeList vectors, as we will be - // accessing them from their logical front, but accessing the end of a - // vector is more efficient. - for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { - CodeList &GeneratedCode = CodeForPatterns[i].second; - std::reverse(GeneratedCode.begin(), GeneratedCode.end()); - } - - // Next, reverse the list of patterns itself for the same reason. - std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); - - OS << "SDNode *Select_" << getLegalCName(OpName) - << OpVTStr << "(SDNode *N) {\n"; - - // Emit all of the patterns now, grouped together to share code. - EmitPatterns(CodeForPatterns, 2, OS); - - // If the last pattern has predicates (which could fail) emit code to - // catch the case where nothing handles a pattern. - if (mightNotMatch) { - OS << "\n"; - OS << " CannotYetSelect(N);\n"; - OS << " return NULL;\n"; - } - OS << "}\n\n"; - } - } - - OS << "// The main instruction selector code.\n" - << "SDNode *SelectCode(SDNode *N) {\n" - << " MVT::SimpleValueType NVT = N->getValueType(0).getSimpleVT().SimpleTy;\n" - << " switch (N->getOpcode()) {\n" - << " default:\n" - << " assert(!N->isMachineOpcode() && \"Node already selected!\");\n" - << " break;\n" - << " case ISD::EntryToken: // These nodes remain the same.\n" - << " case ISD::BasicBlock:\n" - << " case ISD::Register:\n" - << " case ISD::HANDLENODE:\n" - << " case ISD::TargetConstant:\n" - << " case ISD::TargetConstantFP:\n" - << " case ISD::TargetConstantPool:\n" - << " case ISD::TargetFrameIndex:\n" - << " case ISD::TargetExternalSymbol:\n" - << " case ISD::TargetBlockAddress:\n" - << " case ISD::TargetJumpTable:\n" - << " case ISD::TargetGlobalTLSAddress:\n" - << " case ISD::TargetGlobalAddress:\n" - << " case ISD::TokenFactor:\n" - << " case ISD::CopyFromReg:\n" - << " case ISD::CopyToReg: {\n" - << " return NULL;\n" - << " }\n" - << " case ISD::AssertSext:\n" - << " case ISD::AssertZext: {\n" - << " ReplaceUses(SDValue(N, 0), N->getOperand(0));\n" - << " return NULL;\n" - << " }\n" - << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" - << " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n" - << " case ISD::UNDEF: return Select_UNDEF(N);\n"; - - // Loop over all of the case statements, emiting a call to each method we - // emitted above. - for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator - PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); - PBOI != E; ++PBOI) { - const std::string &OpName = PBOI->first; - // Potentially multiple versions of select for this opcode. One for each - // ValueType of the node (or its first true operand if it doesn't produce a - // result. - std::map<std::string, std::vector<std::string> >::iterator OpVTI = - OpcodeVTMap.find(OpName); - std::vector<std::string> &OpVTs = OpVTI->second; - OS << " case " << OpName << ": {\n"; - // If we have only one variant and it's the default, elide the - // switch. Marginally faster, and makes MSVC happier. - if (OpVTs.size()==1 && OpVTs[0].empty()) { - OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; - OS << " break;\n"; - OS << " }\n"; - continue; - } - // Keep track of whether we see a pattern that has an iPtr result. - bool HasPtrPattern = false; - bool HasDefaultPattern = false; - - OS << " switch (NVT) {\n"; - for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { - std::string &VTStr = OpVTs[i]; - if (VTStr.empty()) { - HasDefaultPattern = true; - continue; - } - - // If this is a match on iPTR: don't emit it directly, we need special - // code. - if (VTStr == "_iPTR") { - HasPtrPattern = true; - continue; - } - OS << " case MVT::" << VTStr.substr(1) << ":\n" - << " return Select_" << getLegalCName(OpName) - << VTStr << "(N);\n"; - } - OS << " default:\n"; - - // If there is an iPTR result version of this pattern, emit it here. - if (HasPtrPattern) { - OS << " if (TLI.getPointerTy() == NVT)\n"; - OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; - } - if (HasDefaultPattern) { - OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; - } - OS << " break;\n"; - OS << " }\n"; - OS << " break;\n"; - OS << " }\n"; - } - - OS << " } // end of big switch.\n\n" - << " CannotYetSelect(N);\n" - << " return NULL;\n" - << "}\n\n"; -} - namespace { // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. -struct PatternSortingPredicate2 { - PatternSortingPredicate2(CodeGenDAGPatterns &cgp) : CGP(cgp) {} +struct PatternSortingPredicate { + PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} CodeGenDAGPatterns &CGP; bool operator()(const PatternToMatch *LHS, @@ -1944,7 +204,6 @@ void DAGISelEmitter::run(raw_ostream &OS) { // FIXME: These are being used by hand written code, gross. EmitPredicateFunctions(OS); -#ifdef ENABLE_NEW_ISEL // Add all the patterns to a temporary list so we can sort them. std::vector<const PatternToMatch*> Patterns; for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); @@ -1953,9 +212,8 @@ void DAGISelEmitter::run(raw_ostream &OS) { // We want to process the matches in order of minimal cost. Sort the patterns // so the least cost one is at the start. - // FIXME: Eliminate "PatternSortingPredicate" and rename. std::stable_sort(Patterns.begin(), Patterns.end(), - PatternSortingPredicate2(CGP)); + PatternSortingPredicate(CGP)); // Convert each variant of each pattern into a Matcher. @@ -1977,13 +235,4 @@ void DAGISelEmitter::run(raw_ostream &OS) { //Matcher->dump(); EmitMatcherTable(TheMatcher, CGP, OS); delete TheMatcher; - -#else - EmitNodeTransforms(OS); - - // At this point, we have full information about the 'Patterns' we need to - // parse, both implicitly from instructions as well as from explicit pattern - // definitions. Emit the resultant instruction selector. - EmitInstructionSelector(OS); -#endif } diff --git a/utils/TableGen/DAGISelEmitter.h b/utils/TableGen/DAGISelEmitter.h index d5b889b..5ffdde8 100644 --- a/utils/TableGen/DAGISelEmitter.h +++ b/utils/TableGen/DAGISelEmitter.h @@ -31,24 +31,8 @@ public: // run - Output the isel, returning true on failure. void run(raw_ostream &OS); - - private: - void EmitNodeTransforms(raw_ostream &OS); void EmitPredicateFunctions(raw_ostream &OS); - - void GenerateCodeForPattern(const PatternToMatch &Pattern, - std::vector<std::pair<unsigned, std::string> > &GeneratedCode, - std::set<std::string> &GeneratedDecl, - std::vector<std::string> &TargetOpcodes, - std::vector<std::string> &TargetVTs, - bool &OutputIsVariadic, - unsigned &NumInputRootOps); - void EmitPatterns(std::vector<std::pair<const PatternToMatch*, - std::vector<std::pair<unsigned, std::string> > > > &Patterns, - unsigned Indent, raw_ostream &OS); - - void EmitInstructionSelector(raw_ostream &OS); }; } // End llvm namespace |