diff options
-rw-r--r-- | include/llvm/Transforms/Utils/AddrModeMatcher.h | 102 | ||||
-rw-r--r-- | lib/Transforms/Scalar/CodeGenPrepare.cpp | 644 | ||||
-rw-r--r-- | lib/Transforms/Utils/AddrModeMatcher.cpp | 593 |
3 files changed, 696 insertions, 643 deletions
diff --git a/include/llvm/Transforms/Utils/AddrModeMatcher.h b/include/llvm/Transforms/Utils/AddrModeMatcher.h new file mode 100644 index 0000000..913a541 --- /dev/null +++ b/include/llvm/Transforms/Utils/AddrModeMatcher.h @@ -0,0 +1,102 @@ +//===- AddrModeMatcher.h - Addressing mode matching facility ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// AddressingModeMatcher - This class exposes a single public method, which is +// used to construct a "maximal munch" of the addressing mode for the target +// specified by TLI for an access to "V" with an access type of AccessTy. This +// returns the addressing mode that is actually matched by value, but also +// returns the list of instructions involved in that addressing computation in +// AddrModeInsts. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TRANSFORMS_UTILS_ADDRMODEMATCHER_H +#define LLVM_TRANSFORMS_UTILS_ADDRMODEMATCHER_H + +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/Streams.h" +#include "llvm/Target/TargetLowering.h" + +namespace llvm { + +class GlobalValue; +class Instruction; +class Value; +class Type; +class User; + +/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode +/// which holds actual Value*'s for register values. +struct ExtAddrMode : public TargetLowering::AddrMode { + Value *BaseReg; + Value *ScaledReg; + ExtAddrMode() : BaseReg(0), ScaledReg(0) {} + void print(OStream &OS) const; + void dump() const; +}; + +static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) { + AM.print(OS); + return OS; +} + +class AddressingModeMatcher { + SmallVectorImpl<Instruction*> &AddrModeInsts; + const TargetLowering &TLI; + + /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and + /// the memory instruction that we're computing this address for. + const Type *AccessTy; + Instruction *MemoryInst; + + /// AddrMode - This is the addressing mode that we're building up. This is + /// part of the return value of this addressing mode matching stuff. + ExtAddrMode &AddrMode; + + /// IgnoreProfitability - This is set to true when we should not do + /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode + /// always returns true. + bool IgnoreProfitability; + + AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, + const TargetLowering &T, const Type *AT, + Instruction *MI, ExtAddrMode &AM) + : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) { + IgnoreProfitability = false; + } +public: + + /// Match - Find the maximal addressing mode that a load/store of V can fold, + /// give an access type of AccessTy. This returns a list of involved + /// instructions in AddrModeInsts. + static ExtAddrMode Match(Value *V, const Type *AccessTy, + Instruction *MemoryInst, + SmallVectorImpl<Instruction*> &AddrModeInsts, + const TargetLowering &TLI) { + ExtAddrMode Result; + + bool Success = + AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, + MemoryInst, Result).MatchAddr(V, 0); + Success = Success; assert(Success && "Couldn't select *anything*?"); + return Result; + } +private: + bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); + bool MatchAddr(Value *V, unsigned Depth); + bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth); + bool IsProfitableToFoldIntoAddressingMode(Instruction *I, + ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter); + bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); +}; + +} // End llvm namespace + +#endif diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp index f2288da..1f3a13c 100644 --- a/lib/Transforms/Scalar/CodeGenPrepare.cpp +++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp @@ -25,6 +25,7 @@ #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" +#include "llvm/Transforms/Utils/AddrModeMatcher.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/DenseMap.h" @@ -552,649 +553,6 @@ static bool OptimizeCmpExpression(CmpInst *CI) { // Addressing Mode Analysis and Optimization //===----------------------------------------------------------------------===// -namespace { - /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode - /// which holds actual Value*'s for register values. - struct ExtAddrMode : public TargetLowering::AddrMode { - Value *BaseReg; - Value *ScaledReg; - ExtAddrMode() : BaseReg(0), ScaledReg(0) {} - void print(OStream &OS) const; - void dump() const { - print(cerr); - cerr << '\n'; - } - }; -} // end anonymous namespace - -static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) { - AM.print(OS); - return OS; -} - -void ExtAddrMode::print(OStream &OS) const { - bool NeedPlus = false; - OS << "["; - if (BaseGV) { - OS << (NeedPlus ? " + " : "") - << "GV:"; - WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false); - NeedPlus = true; - } - - if (BaseOffs) - OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true; - - if (BaseReg) { - OS << (NeedPlus ? " + " : "") - << "Base:"; - WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false); - NeedPlus = true; - } - if (Scale) { - OS << (NeedPlus ? " + " : "") - << Scale << "*"; - WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false); - NeedPlus = true; - } - - OS << ']'; -} - -namespace { -/// AddressingModeMatcher - This class exposes a single public method, which is -/// used to construct a "maximal munch" of the addressing mode for the target -/// specified by TLI for an access to "V" with an access type of AccessTy. This -/// returns the addressing mode that is actually matched by value, but also -/// returns the list of instructions involved in that addressing computation in -/// AddrModeInsts. -class AddressingModeMatcher { - SmallVectorImpl<Instruction*> &AddrModeInsts; - const TargetLowering &TLI; - - /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and - /// the memory instruction that we're computing this address for. - const Type *AccessTy; - Instruction *MemoryInst; - - /// AddrMode - This is the addressing mode that we're building up. This is - /// part of the return value of this addressing mode matching stuff. - ExtAddrMode &AddrMode; - - /// IgnoreProfitability - This is set to true when we should not do - /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode - /// always returns true. - bool IgnoreProfitability; - - AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, - const TargetLowering &T, const Type *AT, - Instruction *MI, ExtAddrMode &AM) - : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) { - IgnoreProfitability = false; - } -public: - - /// Match - Find the maximal addressing mode that a load/store of V can fold, - /// give an access type of AccessTy. This returns a list of involved - /// instructions in AddrModeInsts. - static ExtAddrMode Match(Value *V, const Type *AccessTy, - Instruction *MemoryInst, - SmallVectorImpl<Instruction*> &AddrModeInsts, - const TargetLowering &TLI) { - ExtAddrMode Result; - - bool Success = - AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, - MemoryInst, Result).MatchAddr(V, 0); - Success = Success; assert(Success && "Couldn't select *anything*?"); - return Result; - } -private: - bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); - bool MatchAddr(Value *V, unsigned Depth); - bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth); - bool IsProfitableToFoldIntoAddressingMode(Instruction *I, - ExtAddrMode &AMBefore, - ExtAddrMode &AMAfter); - bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); -}; -} // end anonymous namespace - -/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. -/// Return true and update AddrMode if this addr mode is legal for the target, -/// false if not. -bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, - unsigned Depth) { - // If Scale is 1, then this is the same as adding ScaleReg to the addressing - // mode. Just process that directly. - if (Scale == 1) - return MatchAddr(ScaleReg, Depth); - - // If the scale is 0, it takes nothing to add this. - if (Scale == 0) - return true; - - // If we already have a scale of this value, we can add to it, otherwise, we - // need an available scale field. - if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) - return false; - - ExtAddrMode TestAddrMode = AddrMode; - - // Add scale to turn X*4+X*3 -> X*7. This could also do things like - // [A+B + A*7] -> [B+A*8]. - TestAddrMode.Scale += Scale; - TestAddrMode.ScaledReg = ScaleReg; - - // If the new address isn't legal, bail out. - if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) - return false; - - // It was legal, so commit it. - AddrMode = TestAddrMode; - - // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now - // to see if ScaleReg is actually X+C. If so, we can turn this into adding - // X*Scale + C*Scale to addr mode. - ConstantInt *CI; Value *AddLHS; - if (isa<Instruction>(ScaleReg) && // not a constant expr. - match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { - TestAddrMode.ScaledReg = AddLHS; - TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; - - // If this addressing mode is legal, commit it and remember that we folded - // this instruction. - if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { - AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); - AddrMode = TestAddrMode; - return true; - } - } - - // Otherwise, not (x+c)*scale, just return what we have. - return true; -} - -/// MightBeFoldableInst - This is a little filter, which returns true if an -/// addressing computation involving I might be folded into a load/store -/// accessing it. This doesn't need to be perfect, but needs to accept at least -/// the set of instructions that MatchOperationAddr can. -static bool MightBeFoldableInst(Instruction *I) { - switch (I->getOpcode()) { - case Instruction::BitCast: - // Don't touch identity bitcasts. - if (I->getType() == I->getOperand(0)->getType()) - return false; - return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType()); - case Instruction::PtrToInt: - // PtrToInt is always a noop, as we know that the int type is pointer sized. - return true; - case Instruction::IntToPtr: - // We know the input is intptr_t, so this is foldable. - return true; - case Instruction::Add: - return true; - case Instruction::Mul: - case Instruction::Shl: - // Can only handle X*C and X << C. - return isa<ConstantInt>(I->getOperand(1)); - case Instruction::GetElementPtr: - return true; - default: - return false; - } -} - - -/// MatchOperationAddr - Given an instruction or constant expr, see if we can -/// fold the operation into the addressing mode. If so, update the addressing -/// mode and return true, otherwise return false without modifying AddrMode. -bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, - unsigned Depth) { - // Avoid exponential behavior on extremely deep expression trees. - if (Depth >= 5) return false; - - switch (Opcode) { - case Instruction::PtrToInt: - // PtrToInt is always a noop, as we know that the int type is pointer sized. - return MatchAddr(AddrInst->getOperand(0), Depth); - case Instruction::IntToPtr: - // This inttoptr is a no-op if the integer type is pointer sized. - if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == - TLI.getPointerTy()) - return MatchAddr(AddrInst->getOperand(0), Depth); - return false; - case Instruction::BitCast: - // BitCast is always a noop, and we can handle it as long as it is - // int->int or pointer->pointer (we don't want int<->fp or something). - if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) || - isa<IntegerType>(AddrInst->getOperand(0)->getType())) && - // Don't touch identity bitcasts. These were probably put here by LSR, - // and we don't want to mess around with them. Assume it knows what it - // is doing. - AddrInst->getOperand(0)->getType() != AddrInst->getType()) - return MatchAddr(AddrInst->getOperand(0), Depth); - return false; - case Instruction::Add: { - // Check to see if we can merge in the RHS then the LHS. If so, we win. - ExtAddrMode BackupAddrMode = AddrMode; - unsigned OldSize = AddrModeInsts.size(); - if (MatchAddr(AddrInst->getOperand(1), Depth+1) && - MatchAddr(AddrInst->getOperand(0), Depth+1)) - return true; - - // Restore the old addr mode info. - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - - // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. - if (MatchAddr(AddrInst->getOperand(0), Depth+1) && - MatchAddr(AddrInst->getOperand(1), Depth+1)) - return true; - - // Otherwise we definitely can't merge the ADD in. - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - break; - } - //case Instruction::Or: - // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. - //break; - case Instruction::Mul: - case Instruction::Shl: { - // Can only handle X*C and X << C. - ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); - if (!RHS) return false; - int64_t Scale = RHS->getSExtValue(); - if (Opcode == Instruction::Shl) - Scale = 1 << Scale; - - return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); - } - case Instruction::GetElementPtr: { - // Scan the GEP. We check it if it contains constant offsets and at most - // one variable offset. - int VariableOperand = -1; - unsigned VariableScale = 0; - - int64_t ConstantOffset = 0; - const TargetData *TD = TLI.getTargetData(); - gep_type_iterator GTI = gep_type_begin(AddrInst); - for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { - if (const StructType *STy = dyn_cast<StructType>(*GTI)) { - const StructLayout *SL = TD->getStructLayout(STy); - unsigned Idx = - cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); - ConstantOffset += SL->getElementOffset(Idx); - } else { - uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType()); - if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { - ConstantOffset += CI->getSExtValue()*TypeSize; - } else if (TypeSize) { // Scales of zero don't do anything. - // We only allow one variable index at the moment. - if (VariableOperand != -1) - return false; - - // Remember the variable index. - VariableOperand = i; - VariableScale = TypeSize; - } - } - } - - // A common case is for the GEP to only do a constant offset. In this case, - // just add it to the disp field and check validity. - if (VariableOperand == -1) { - AddrMode.BaseOffs += ConstantOffset; - if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ - // Check to see if we can fold the base pointer in too. - if (MatchAddr(AddrInst->getOperand(0), Depth+1)) - return true; - } - AddrMode.BaseOffs -= ConstantOffset; - return false; - } - - // Save the valid addressing mode in case we can't match. - ExtAddrMode BackupAddrMode = AddrMode; - - // Check that this has no base reg yet. If so, we won't have a place to - // put the base of the GEP (assuming it is not a null ptr). - bool SetBaseReg = true; - if (isa<ConstantPointerNull>(AddrInst->getOperand(0))) - SetBaseReg = false; // null pointer base doesn't need representation. - else if (AddrMode.HasBaseReg) - return false; // Base register already specified, can't match GEP. - else { - // Otherwise, we'll use the GEP base as the BaseReg. - AddrMode.HasBaseReg = true; - AddrMode.BaseReg = AddrInst->getOperand(0); - } - - // See if the scale and offset amount is valid for this target. - AddrMode.BaseOffs += ConstantOffset; - - if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, - Depth)) { - AddrMode = BackupAddrMode; - return false; - } - - // If we have a null as the base of the GEP, folding in the constant offset - // plus variable scale is all we can do. - if (!SetBaseReg) return true; - - // If this match succeeded, we know that we can form an address with the - // GepBase as the basereg. Match the base pointer of the GEP more - // aggressively by zeroing out BaseReg and rematching. If the base is - // (for example) another GEP, this allows merging in that other GEP into - // the addressing mode we're forming. - AddrMode.HasBaseReg = false; - AddrMode.BaseReg = 0; - bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1); - assert(Success && "MatchAddr should be able to fill in BaseReg!"); - Success=Success; - return true; - } - } - return false; -} - -/// MatchAddr - If we can, try to add the value of 'Addr' into the current -/// addressing mode. If Addr can't be added to AddrMode this returns false and -/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type -/// or intptr_t for the target. -/// -bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { - if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { - // Fold in immediates if legal for the target. - AddrMode.BaseOffs += CI->getSExtValue(); - if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) - return true; - AddrMode.BaseOffs -= CI->getSExtValue(); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { - // If this is a global variable, try to fold it into the addressing mode. - if (AddrMode.BaseGV == 0) { - AddrMode.BaseGV = GV; - if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) - return true; - AddrMode.BaseGV = 0; - } - } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { - ExtAddrMode BackupAddrMode = AddrMode; - unsigned OldSize = AddrModeInsts.size(); - - // Check to see if it is possible to fold this operation. - if (MatchOperationAddr(I, I->getOpcode(), Depth)) { - // Okay, it's possible to fold this. Check to see if it is actually - // *profitable* to do so. We use a simple cost model to avoid increasing - // register pressure too much. - if (I->hasOneUse() || - IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { - AddrModeInsts.push_back(I); - return true; - } - - // It isn't profitable to do this, roll back. - //cerr << "NOT FOLDING: " << *I; - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - } - } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { - if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) - return true; - } else if (isa<ConstantPointerNull>(Addr)) { - // Null pointer gets folded without affecting the addressing mode. - return true; - } - - // Worse case, the target should support [reg] addressing modes. :) - if (!AddrMode.HasBaseReg) { - AddrMode.HasBaseReg = true; - AddrMode.BaseReg = Addr; - // Still check for legality in case the target supports [imm] but not [i+r]. - if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) - return true; - AddrMode.HasBaseReg = false; - AddrMode.BaseReg = 0; - } - - // If the base register is already taken, see if we can do [r+r]. - if (AddrMode.Scale == 0) { - AddrMode.Scale = 1; - AddrMode.ScaledReg = Addr; - if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) - return true; - AddrMode.Scale = 0; - AddrMode.ScaledReg = 0; - } - // Couldn't match. - return false; -} - - -/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified -/// inline asm call are due to memory operands. If so, return true, otherwise -/// return false. -static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, - const TargetLowering &TLI) { - std::vector<InlineAsm::ConstraintInfo> - Constraints = IA->ParseConstraints(); - - unsigned ArgNo = 1; // ArgNo - The operand of the CallInst. - for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { - TargetLowering::AsmOperandInfo OpInfo(Constraints[i]); - - // Compute the value type for each operand. - switch (OpInfo.Type) { - case InlineAsm::isOutput: - if (OpInfo.isIndirect) - OpInfo.CallOperandVal = CI->getOperand(ArgNo++); - break; - case InlineAsm::isInput: - OpInfo.CallOperandVal = CI->getOperand(ArgNo++); - break; - case InlineAsm::isClobber: - // Nothing to do. - break; - } - - // Compute the constraint code and ConstraintType to use. - TLI.ComputeConstraintToUse(OpInfo, SDValue(), - OpInfo.ConstraintType == TargetLowering::C_Memory); - - // If this asm operand is our Value*, and if it isn't an indirect memory - // operand, we can't fold it! - if (OpInfo.CallOperandVal == OpVal && - (OpInfo.ConstraintType != TargetLowering::C_Memory || - !OpInfo.isIndirect)) - return false; - } - - return true; -} - - -/// FindAllMemoryUses - Recursively walk all the uses of I until we find a -/// memory use. If we find an obviously non-foldable instruction, return true. -/// Add the ultimately found memory instructions to MemoryUses. -static bool FindAllMemoryUses(Instruction *I, - SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, - SmallPtrSet<Instruction*, 16> &ConsideredInsts, - const TargetLowering &TLI) { - // If we already considered this instruction, we're done. - if (!ConsideredInsts.insert(I)) - return false; - - // If this is an obviously unfoldable instruction, bail out. - if (!MightBeFoldableInst(I)) - return true; - - // Loop over all the uses, recursively processing them. - for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); - UI != E; ++UI) { - if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { - MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo())); - continue; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { - if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr. - MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo())); - continue; - } - - if (CallInst *CI = dyn_cast<CallInst>(*UI)) { - InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); - if (IA == 0) return true; - - // If this is a memory operand, we're cool, otherwise bail out. - if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) - return true; - continue; - } - - if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts, - TLI)) - return true; - } - - return false; -} - - -/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at -/// the use site that we're folding it into. If so, there is no cost to -/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values -/// that we know are live at the instruction already. -bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, - Value *KnownLive2) { - // If Val is either of the known-live values, we know it is live! - if (Val == 0 || Val == KnownLive1 || Val == KnownLive2) - return true; - - // All values other than instructions and arguments (e.g. constants) are live. - if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; - - // If Val is a constant sized alloca in the entry block, it is live, this is - // true because it is just a reference to the stack/frame pointer, which is - // live for the whole function. - if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) - if (AI->isStaticAlloca()) - return true; - - // Check to see if this value is already used in the memory instruction's - // block. If so, it's already live into the block at the very least, so we - // can reasonably fold it. - BasicBlock *MemBB = MemoryInst->getParent(); - for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end(); - UI != E; ++UI) - // We know that uses of arguments and instructions have to be instructions. - if (cast<Instruction>(*UI)->getParent() == MemBB) - return true; - - return false; -} - - - -/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing -/// mode of the machine to fold the specified instruction into a load or store -/// that ultimately uses it. However, the specified instruction has multiple -/// uses. Given this, it may actually increase register pressure to fold it -/// into the load. For example, consider this code: -/// -/// X = ... -/// Y = X+1 -/// use(Y) -> nonload/store -/// Z = Y+1 -/// load Z -/// -/// In this case, Y has multiple uses, and can be folded into the load of Z -/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to -/// be live at the use(Y) line. If we don't fold Y into load Z, we use one -/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the -/// number of computations either. -/// -/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If -/// X was live across 'load Z' for other reasons, we actually *would* want to -/// fold the addressing mode in the Z case. This would make Y die earlier. -bool AddressingModeMatcher:: -IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, - ExtAddrMode &AMAfter) { - if (IgnoreProfitability) return true; - - // AMBefore is the addressing mode before this instruction was folded into it, - // and AMAfter is the addressing mode after the instruction was folded. Get - // the set of registers referenced by AMAfter and subtract out those - // referenced by AMBefore: this is the set of values which folding in this - // address extends the lifetime of. - // - // Note that there are only two potential values being referenced here, - // BaseReg and ScaleReg (global addresses are always available, as are any - // folded immediates). - Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; - - // If the BaseReg or ScaledReg was referenced by the previous addrmode, their - // lifetime wasn't extended by adding this instruction. - if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) - BaseReg = 0; - if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) - ScaledReg = 0; - - // If folding this instruction (and it's subexprs) didn't extend any live - // ranges, we're ok with it. - if (BaseReg == 0 && ScaledReg == 0) - return true; - - // If all uses of this instruction are ultimately load/store/inlineasm's, - // check to see if their addressing modes will include this instruction. If - // so, we can fold it into all uses, so it doesn't matter if it has multiple - // uses. - SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; - SmallPtrSet<Instruction*, 16> ConsideredInsts; - if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) - return false; // Has a non-memory, non-foldable use! - - // Now that we know that all uses of this instruction are part of a chain of - // computation involving only operations that could theoretically be folded - // into a memory use, loop over each of these uses and see if they could - // *actually* fold the instruction. - SmallVector<Instruction*, 32> MatchedAddrModeInsts; - for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { - Instruction *User = MemoryUses[i].first; - unsigned OpNo = MemoryUses[i].second; - - // Get the access type of this use. If the use isn't a pointer, we don't - // know what it accesses. - Value *Address = User->getOperand(OpNo); - if (!isa<PointerType>(Address->getType())) - return false; - const Type *AddressAccessTy = - cast<PointerType>(Address->getType())->getElementType(); - - // Do a match against the root of this address, ignoring profitability. This - // will tell us if the addressing mode for the memory operation will - // *actually* cover the shared instruction. - ExtAddrMode Result; - AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, - MemoryInst, Result); - Matcher.IgnoreProfitability = true; - bool Success = Matcher.MatchAddr(Address, 0); - Success = Success; assert(Success && "Couldn't select *anything*?"); - - // If the match didn't cover I, then it won't be shared by it. - if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), - I) == MatchedAddrModeInsts.end()) - return false; - - MatchedAddrModeInsts.clear(); - } - - return true; -} - - //===----------------------------------------------------------------------===// // Memory Optimization //===----------------------------------------------------------------------===// diff --git a/lib/Transforms/Utils/AddrModeMatcher.cpp b/lib/Transforms/Utils/AddrModeMatcher.cpp new file mode 100644 index 0000000..766f1ed --- /dev/null +++ b/lib/Transforms/Utils/AddrModeMatcher.cpp @@ -0,0 +1,593 @@ +//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements target addressing mode matcher class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/AddrModeMatcher.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalValue.h" +#include "llvm/Instruction.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/PatternMatch.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +void ExtAddrMode::print(OStream &OS) const { + bool NeedPlus = false; + OS << "["; + if (BaseGV) { + OS << (NeedPlus ? " + " : "") + << "GV:"; + WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false); + NeedPlus = true; + } + + if (BaseOffs) + OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true; + + if (BaseReg) { + OS << (NeedPlus ? " + " : "") + << "Base:"; + WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false); + NeedPlus = true; + } + if (Scale) { + OS << (NeedPlus ? " + " : "") + << Scale << "*"; + WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false); + NeedPlus = true; + } + + OS << ']'; +} + +void ExtAddrMode::dump() const { + print(cerr); + cerr << '\n'; +} + + +/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. +/// Return true and update AddrMode if this addr mode is legal for the target, +/// false if not. +bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, + unsigned Depth) { + // If Scale is 1, then this is the same as adding ScaleReg to the addressing + // mode. Just process that directly. + if (Scale == 1) + return MatchAddr(ScaleReg, Depth); + + // If the scale is 0, it takes nothing to add this. + if (Scale == 0) + return true; + + // If we already have a scale of this value, we can add to it, otherwise, we + // need an available scale field. + if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) + return false; + + ExtAddrMode TestAddrMode = AddrMode; + + // Add scale to turn X*4+X*3 -> X*7. This could also do things like + // [A+B + A*7] -> [B+A*8]. + TestAddrMode.Scale += Scale; + TestAddrMode.ScaledReg = ScaleReg; + + // If the new address isn't legal, bail out. + if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) + return false; + + // It was legal, so commit it. + AddrMode = TestAddrMode; + + // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now + // to see if ScaleReg is actually X+C. If so, we can turn this into adding + // X*Scale + C*Scale to addr mode. + ConstantInt *CI; Value *AddLHS; + if (isa<Instruction>(ScaleReg) && // not a constant expr. + match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { + TestAddrMode.ScaledReg = AddLHS; + TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; + + // If this addressing mode is legal, commit it and remember that we folded + // this instruction. + if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { + AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); + AddrMode = TestAddrMode; + return true; + } + } + + // Otherwise, not (x+c)*scale, just return what we have. + return true; +} + +/// MightBeFoldableInst - This is a little filter, which returns true if an +/// addressing computation involving I might be folded into a load/store +/// accessing it. This doesn't need to be perfect, but needs to accept at least +/// the set of instructions that MatchOperationAddr can. +static bool MightBeFoldableInst(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::BitCast: + // Don't touch identity bitcasts. + if (I->getType() == I->getOperand(0)->getType()) + return false; + return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType()); + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return true; + case Instruction::IntToPtr: + // We know the input is intptr_t, so this is foldable. + return true; + case Instruction::Add: + return true; + case Instruction::Mul: + case Instruction::Shl: + // Can only handle X*C and X << C. + return isa<ConstantInt>(I->getOperand(1)); + case Instruction::GetElementPtr: + return true; + default: + return false; + } +} + + +/// MatchOperationAddr - Given an instruction or constant expr, see if we can +/// fold the operation into the addressing mode. If so, update the addressing +/// mode and return true, otherwise return false without modifying AddrMode. +bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, + unsigned Depth) { + // Avoid exponential behavior on extremely deep expression trees. + if (Depth >= 5) return false; + + switch (Opcode) { + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return MatchAddr(AddrInst->getOperand(0), Depth); + case Instruction::IntToPtr: + // This inttoptr is a no-op if the integer type is pointer sized. + if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == + TLI.getPointerTy()) + return MatchAddr(AddrInst->getOperand(0), Depth); + return false; + case Instruction::BitCast: + // BitCast is always a noop, and we can handle it as long as it is + // int->int or pointer->pointer (we don't want int<->fp or something). + if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) || + isa<IntegerType>(AddrInst->getOperand(0)->getType())) && + // Don't touch identity bitcasts. These were probably put here by LSR, + // and we don't want to mess around with them. Assume it knows what it + // is doing. + AddrInst->getOperand(0)->getType() != AddrInst->getType()) + return MatchAddr(AddrInst->getOperand(0), Depth); + return false; + case Instruction::Add: { + // Check to see if we can merge in the RHS then the LHS. If so, we win. + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + if (MatchAddr(AddrInst->getOperand(1), Depth+1) && + MatchAddr(AddrInst->getOperand(0), Depth+1)) + return true; + + // Restore the old addr mode info. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + + // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. + if (MatchAddr(AddrInst->getOperand(0), Depth+1) && + MatchAddr(AddrInst->getOperand(1), Depth+1)) + return true; + + // Otherwise we definitely can't merge the ADD in. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + break; + } + //case Instruction::Or: + // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. + //break; + case Instruction::Mul: + case Instruction::Shl: { + // Can only handle X*C and X << C. + ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); + if (!RHS) return false; + int64_t Scale = RHS->getSExtValue(); + if (Opcode == Instruction::Shl) + Scale = 1 << Scale; + + return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); + } + case Instruction::GetElementPtr: { + // Scan the GEP. We check it if it contains constant offsets and at most + // one variable offset. + int VariableOperand = -1; + unsigned VariableScale = 0; + + int64_t ConstantOffset = 0; + const TargetData *TD = TLI.getTargetData(); + gep_type_iterator GTI = gep_type_begin(AddrInst); + for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { + if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + const StructLayout *SL = TD->getStructLayout(STy); + unsigned Idx = + cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); + ConstantOffset += SL->getElementOffset(Idx); + } else { + uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType()); + if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { + ConstantOffset += CI->getSExtValue()*TypeSize; + } else if (TypeSize) { // Scales of zero don't do anything. + // We only allow one variable index at the moment. + if (VariableOperand != -1) + return false; + + // Remember the variable index. + VariableOperand = i; + VariableScale = TypeSize; + } + } + } + + // A common case is for the GEP to only do a constant offset. In this case, + // just add it to the disp field and check validity. + if (VariableOperand == -1) { + AddrMode.BaseOffs += ConstantOffset; + if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ + // Check to see if we can fold the base pointer in too. + if (MatchAddr(AddrInst->getOperand(0), Depth+1)) + return true; + } + AddrMode.BaseOffs -= ConstantOffset; + return false; + } + + // Save the valid addressing mode in case we can't match. + ExtAddrMode BackupAddrMode = AddrMode; + + // Check that this has no base reg yet. If so, we won't have a place to + // put the base of the GEP (assuming it is not a null ptr). + bool SetBaseReg = true; + if (isa<ConstantPointerNull>(AddrInst->getOperand(0))) + SetBaseReg = false; // null pointer base doesn't need representation. + else if (AddrMode.HasBaseReg) + return false; // Base register already specified, can't match GEP. + else { + // Otherwise, we'll use the GEP base as the BaseReg. + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = AddrInst->getOperand(0); + } + + // See if the scale and offset amount is valid for this target. + AddrMode.BaseOffs += ConstantOffset; + + if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, + Depth)) { + AddrMode = BackupAddrMode; + return false; + } + + // If we have a null as the base of the GEP, folding in the constant offset + // plus variable scale is all we can do. + if (!SetBaseReg) return true; + + // If this match succeeded, we know that we can form an address with the + // GepBase as the basereg. Match the base pointer of the GEP more + // aggressively by zeroing out BaseReg and rematching. If the base is + // (for example) another GEP, this allows merging in that other GEP into + // the addressing mode we're forming. + AddrMode.HasBaseReg = false; + AddrMode.BaseReg = 0; + bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1); + assert(Success && "MatchAddr should be able to fill in BaseReg!"); + Success=Success; + return true; + } + } + return false; +} + +/// MatchAddr - If we can, try to add the value of 'Addr' into the current +/// addressing mode. If Addr can't be added to AddrMode this returns false and +/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type +/// or intptr_t for the target. +/// +bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { + // Fold in immediates if legal for the target. + AddrMode.BaseOffs += CI->getSExtValue(); + if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) + return true; + AddrMode.BaseOffs -= CI->getSExtValue(); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { + // If this is a global variable, try to fold it into the addressing mode. + if (AddrMode.BaseGV == 0) { + AddrMode.BaseGV = GV; + if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) + return true; + AddrMode.BaseGV = 0; + } + } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + // Check to see if it is possible to fold this operation. + if (MatchOperationAddr(I, I->getOpcode(), Depth)) { + // Okay, it's possible to fold this. Check to see if it is actually + // *profitable* to do so. We use a simple cost model to avoid increasing + // register pressure too much. + if (I->hasOneUse() || + IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { + AddrModeInsts.push_back(I); + return true; + } + + // It isn't profitable to do this, roll back. + //cerr << "NOT FOLDING: " << *I; + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + } + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { + if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) + return true; + } else if (isa<ConstantPointerNull>(Addr)) { + // Null pointer gets folded without affecting the addressing mode. + return true; + } + + // Worse case, the target should support [reg] addressing modes. :) + if (!AddrMode.HasBaseReg) { + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = Addr; + // Still check for legality in case the target supports [imm] but not [i+r]. + if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) + return true; + AddrMode.HasBaseReg = false; + AddrMode.BaseReg = 0; + } + + // If the base register is already taken, see if we can do [r+r]. + if (AddrMode.Scale == 0) { + AddrMode.Scale = 1; + AddrMode.ScaledReg = Addr; + if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) + return true; + AddrMode.Scale = 0; + AddrMode.ScaledReg = 0; + } + // Couldn't match. + return false; +} + + +/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified +/// inline asm call are due to memory operands. If so, return true, otherwise +/// return false. +static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, + const TargetLowering &TLI) { + std::vector<InlineAsm::ConstraintInfo> + Constraints = IA->ParseConstraints(); + + unsigned ArgNo = 1; // ArgNo - The operand of the CallInst. + for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo OpInfo(Constraints[i]); + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + if (OpInfo.isIndirect) + OpInfo.CallOperandVal = CI->getOperand(ArgNo++); + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = CI->getOperand(ArgNo++); + break; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + // Compute the constraint code and ConstraintType to use. + TLI.ComputeConstraintToUse(OpInfo, SDValue(), + OpInfo.ConstraintType == TargetLowering::C_Memory); + + // If this asm operand is our Value*, and if it isn't an indirect memory + // operand, we can't fold it! + if (OpInfo.CallOperandVal == OpVal && + (OpInfo.ConstraintType != TargetLowering::C_Memory || + !OpInfo.isIndirect)) + return false; + } + + return true; +} + + +/// FindAllMemoryUses - Recursively walk all the uses of I until we find a +/// memory use. If we find an obviously non-foldable instruction, return true. +/// Add the ultimately found memory instructions to MemoryUses. +static bool FindAllMemoryUses(Instruction *I, + SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, + SmallPtrSet<Instruction*, 16> &ConsideredInsts, + const TargetLowering &TLI) { + // If we already considered this instruction, we're done. + if (!ConsideredInsts.insert(I)) + return false; + + // If this is an obviously unfoldable instruction, bail out. + if (!MightBeFoldableInst(I)) + return true; + + // Loop over all the uses, recursively processing them. + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) { + if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { + MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo())); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { + if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo())); + continue; + } + + if (CallInst *CI = dyn_cast<CallInst>(*UI)) { + InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); + if (IA == 0) return true; + + // If this is a memory operand, we're cool, otherwise bail out. + if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) + return true; + continue; + } + + if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts, + TLI)) + return true; + } + + return false; +} + + +/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at +/// the use site that we're folding it into. If so, there is no cost to +/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values +/// that we know are live at the instruction already. +bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, + Value *KnownLive2) { + // If Val is either of the known-live values, we know it is live! + if (Val == 0 || Val == KnownLive1 || Val == KnownLive2) + return true; + + // All values other than instructions and arguments (e.g. constants) are live. + if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; + + // If Val is a constant sized alloca in the entry block, it is live, this is + // true because it is just a reference to the stack/frame pointer, which is + // live for the whole function. + if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) + if (AI->isStaticAlloca()) + return true; + + // Check to see if this value is already used in the memory instruction's + // block. If so, it's already live into the block at the very least, so we + // can reasonably fold it. + BasicBlock *MemBB = MemoryInst->getParent(); + for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end(); + UI != E; ++UI) + // We know that uses of arguments and instructions have to be instructions. + if (cast<Instruction>(*UI)->getParent() == MemBB) + return true; + + return false; +} + + + +/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing +/// mode of the machine to fold the specified instruction into a load or store +/// that ultimately uses it. However, the specified instruction has multiple +/// uses. Given this, it may actually increase register pressure to fold it +/// into the load. For example, consider this code: +/// +/// X = ... +/// Y = X+1 +/// use(Y) -> nonload/store +/// Z = Y+1 +/// load Z +/// +/// In this case, Y has multiple uses, and can be folded into the load of Z +/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to +/// be live at the use(Y) line. If we don't fold Y into load Z, we use one +/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the +/// number of computations either. +/// +/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If +/// X was live across 'load Z' for other reasons, we actually *would* want to +/// fold the addressing mode in the Z case. This would make Y die earlier. +bool AddressingModeMatcher:: +IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter) { + if (IgnoreProfitability) return true; + + // AMBefore is the addressing mode before this instruction was folded into it, + // and AMAfter is the addressing mode after the instruction was folded. Get + // the set of registers referenced by AMAfter and subtract out those + // referenced by AMBefore: this is the set of values which folding in this + // address extends the lifetime of. + // + // Note that there are only two potential values being referenced here, + // BaseReg and ScaleReg (global addresses are always available, as are any + // folded immediates). + Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; + + // If the BaseReg or ScaledReg was referenced by the previous addrmode, their + // lifetime wasn't extended by adding this instruction. + if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + BaseReg = 0; + if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + ScaledReg = 0; + + // If folding this instruction (and it's subexprs) didn't extend any live + // ranges, we're ok with it. + if (BaseReg == 0 && ScaledReg == 0) + return true; + + // If all uses of this instruction are ultimately load/store/inlineasm's, + // check to see if their addressing modes will include this instruction. If + // so, we can fold it into all uses, so it doesn't matter if it has multiple + // uses. + SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; + SmallPtrSet<Instruction*, 16> ConsideredInsts; + if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) + return false; // Has a non-memory, non-foldable use! + + // Now that we know that all uses of this instruction are part of a chain of + // computation involving only operations that could theoretically be folded + // into a memory use, loop over each of these uses and see if they could + // *actually* fold the instruction. + SmallVector<Instruction*, 32> MatchedAddrModeInsts; + for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { + Instruction *User = MemoryUses[i].first; + unsigned OpNo = MemoryUses[i].second; + + // Get the access type of this use. If the use isn't a pointer, we don't + // know what it accesses. + Value *Address = User->getOperand(OpNo); + if (!isa<PointerType>(Address->getType())) + return false; + const Type *AddressAccessTy = + cast<PointerType>(Address->getType())->getElementType(); + + // Do a match against the root of this address, ignoring profitability. This + // will tell us if the addressing mode for the memory operation will + // *actually* cover the shared instruction. + ExtAddrMode Result; + AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, + MemoryInst, Result); + Matcher.IgnoreProfitability = true; + bool Success = Matcher.MatchAddr(Address, 0); + Success = Success; assert(Success && "Couldn't select *anything*?"); + + // If the match didn't cover I, then it won't be shared by it. + if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), + I) == MatchedAddrModeInsts.end()) + return false; + + MatchedAddrModeInsts.clear(); + } + + return true; +} |