summaryrefslogtreecommitdiffstats
path: root/docs
diff options
context:
space:
mode:
Diffstat (limited to 'docs')
-rw-r--r--docs/NVPTXUsage.rst704
1 files changed, 704 insertions, 0 deletions
diff --git a/docs/NVPTXUsage.rst b/docs/NVPTXUsage.rst
index 5451619..53aa093 100644
--- a/docs/NVPTXUsage.rst
+++ b/docs/NVPTXUsage.rst
@@ -66,6 +66,8 @@ function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.
When compiled, the PTX kernel functions are callable by host-side code.
+.. _address_spaces:
+
Address Spaces
--------------
@@ -103,6 +105,25 @@ space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
variables.
+Triples
+-------
+
+The NVPTX target uses the module triple to select between 32/64-bit code
+generation and the driver-compiler interface to use. The triple architecture
+can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
+operating system should be one of ``cuda`` or ``nvcl``, which determines the
+interface used by the generated code to communicate with the driver. Most
+users will want to use ``cuda`` as the operating system, which makes the
+generated PTX compatible with the CUDA Driver API.
+
+Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``
+
+Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``
+
+
+
+.. _nvptx_intrinsics:
+
NVPTX Intrinsics
================
@@ -238,6 +259,116 @@ For the full set of NVPTX intrinsics, please see the
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.
+.. _libdevice:
+
+Linking with Libdevice
+======================
+
+The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
+implements many common mathematical functions. This library can be used as a
+high-performance math library for any compilers using the LLVM NVPTX target.
+The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
+there is a separate version for each compute architecture.
+
+For a list of all math functions implemented in libdevice, see
+`libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.
+
+To accomodate various math-related compiler flags that can affect code
+generation of libdevice code, the library code depends on a special LLVM IR
+pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
+pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
+with constants based on the defined reflection parameters. Such conditional
+code often follows a pattern:
+
+.. code-block:: c++
+
+ float my_function(float a) {
+ if (__nvvm_reflect("FASTMATH"))
+ return my_function_fast(a);
+ else
+ return my_function_precise(a);
+ }
+
+The default value for all unspecified reflection parameters is zero.
+
+The ``NVVMReflect`` pass should be executed early in the optimization
+pipeline, immediately after the link stage. The ``internalize`` pass is also
+recommended to remove unused math functions from the resulting PTX. For an
+input IR module ``module.bc``, the following compilation flow is recommended:
+
+1. Save list of external functions in ``module.bc``
+2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
+3. Internalize all functions not in list from (1)
+4. Eliminate all unused internal functions
+5. Run ``NVVMReflect`` pass
+6. Run standard optimization pipeline
+
+.. note::
+
+ ``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
+ libdevice functions. It is possible to link two IR modules that have been
+ linked against libdevice using different reflection variables.
+
+Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
+often leave behind dead code of the form:
+
+.. code-block:: llvm
+
+ entry:
+ ..
+ br i1 true, label %foo, label %bar
+ foo:
+ ..
+ bar:
+ ; Dead code
+ ..
+
+Therefore, it is recommended that ``NVVMReflect`` is executed early in the
+optimization pipeline before dead-code elimination.
+
+
+Reflection Parameters
+---------------------
+
+The libdevice library currently uses the following reflection parameters to
+control code generation:
+
+==================== ======================================================
+Flag Description
+==================== ======================================================
+``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
+==================== ======================================================
+
+
+Invoking NVVMReflect
+--------------------
+
+To ensure that all dead code caused by the reflection pass is eliminated, it
+is recommended that the reflection pass is executed early in the LLVM IR
+optimization pipeline. The pass takes an optional mapping of reflection
+parameter name to an integer value. This mapping can be specified as either a
+command-line option to ``opt`` or as an LLVM ``StringMap<int>`` object when
+programmatically creating a pass pipeline.
+
+With ``opt``:
+
+.. code-block:: text
+
+ # opt -nvvm-reflect -nvvm-reflect-list=<var>=<value>,<var>=<value> module.bc -o module.reflect.bc
+
+
+With programmatic pass pipeline:
+
+.. code-block:: c++
+
+ extern ModulePass *llvm::createNVVMReflectPass(const StringMap<int>& Mapping);
+
+ StringMap<int> ReflectParams;
+ ReflectParams["__CUDA_FTZ"] = 1;
+ Passes.add(createNVVMReflectPass(ReflectParams));
+
+
+
Executing PTX
=============
@@ -274,3 +405,576 @@ JIT compiling a PTX string to a device binary:
For full examples of executing PTX assembly, please see the `CUDA Samples
<https://developer.nvidia.com/cuda-downloads>`_ distribution.
+
+
+Common Issues
+=============
+
+ptxas complains of undefined function: __nvvm_reflect
+-----------------------------------------------------
+
+When linking with libdevice, the ``NVVMReflect`` pass must be used. See
+:ref:`libdevice` for more information.
+
+
+Tutorial: A Simple Compute Kernel
+=================================
+
+To start, let us take a look at a simple compute kernel written directly in
+LLVM IR. The kernel implements vector addition, where each thread computes one
+element of the output vector C from the input vectors A and B. To make this
+easier, we also assume that only a single CTA (thread block) will be launched,
+and that it will be one dimensional.
+
+
+The Kernel
+----------
+
+.. code-block:: llvm
+
+ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
+ target triple = "nvptx64-nvidia-cuda"
+
+ ; Intrinsic to read X component of thread ID
+ declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
+
+ define void @kernel(float addrspace(1)* %A,
+ float addrspace(1)* %B,
+ float addrspace(1)* %C) {
+ entry:
+ ; What is my ID?
+ %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
+
+ ; Compute pointers into A, B, and C
+ %ptrA = getelementptr float addrspace(1)* %A, i32 %id
+ %ptrB = getelementptr float addrspace(1)* %B, i32 %id
+ %ptrC = getelementptr float addrspace(1)* %C, i32 %id
+
+ ; Read A, B
+ %valA = load float addrspace(1)* %ptrA, align 4
+ %valB = load float addrspace(1)* %ptrB, align 4
+
+ ; Compute C = A + B
+ %valC = fadd float %valA, %valB
+
+ ; Store back to C
+ store float %valC, float addrspace(1)* %ptrC, align 4
+
+ ret void
+ }
+
+ !nvvm.annotations = !{!0}
+ !0 = metadata !{void (float addrspace(1)*,
+ float addrspace(1)*,
+ float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}
+
+
+We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:
+
+.. code-block:: text
+
+ # llc -mcpu=sm_20 kernel.ll -o kernel.ptx
+
+
+.. note::
+
+ If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
+ in the module data layout string and use ``nvptx64-nvidia-cuda`` as the
+ target triple.
+
+
+The output we get from ``llc`` (as of LLVM 3.4):
+
+.. code-block:: text
+
+ //
+ // Generated by LLVM NVPTX Back-End
+ //
+
+ .version 3.1
+ .target sm_20
+ .address_size 64
+
+ // .globl kernel
+ // @kernel
+ .visible .entry kernel(
+ .param .u64 kernel_param_0,
+ .param .u64 kernel_param_1,
+ .param .u64 kernel_param_2
+ )
+ {
+ .reg .f32 %f<4>;
+ .reg .s32 %r<2>;
+ .reg .s64 %rl<8>;
+
+ // BB#0: // %entry
+ ld.param.u64 %rl1, [kernel_param_0];
+ mov.u32 %r1, %tid.x;
+ mul.wide.s32 %rl2, %r1, 4;
+ add.s64 %rl3, %rl1, %rl2;
+ ld.param.u64 %rl4, [kernel_param_1];
+ add.s64 %rl5, %rl4, %rl2;
+ ld.param.u64 %rl6, [kernel_param_2];
+ add.s64 %rl7, %rl6, %rl2;
+ ld.global.f32 %f1, [%rl3];
+ ld.global.f32 %f2, [%rl5];
+ add.f32 %f3, %f1, %f2;
+ st.global.f32 [%rl7], %f3;
+ ret;
+ }
+
+
+Dissecting the Kernel
+---------------------
+
+Now let us dissect the LLVM IR that makes up this kernel.
+
+Data Layout
+^^^^^^^^^^^
+
+The data layout string determines the size in bits of common data types, their
+ABI alignment, and their storage size. For NVPTX, you should use one of the
+following:
+
+32-bit PTX:
+
+.. code-block:: llvm
+
+ target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
+
+64-bit PTX:
+
+.. code-block:: llvm
+
+ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
+
+
+Target Intrinsics
+^^^^^^^^^^^^^^^^^
+
+In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
+read the X component of the current thread's ID, which corresponds to a read
+of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
+intrinsics. A short list is shown below; please see
+``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.
+
+
+================================================ ====================
+Intrinsic CUDA Equivalent
+================================================ ====================
+``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}`` threadIdx.{x,y,z}
+``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}`` blockIdx.{x,y,z}
+``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}`` blockDim.{x,y,z}
+``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}`` gridDim.{x,y,z}
+``void @llvm.cuda.syncthreads()`` __syncthreads()
+================================================ ====================
+
+
+Address Spaces
+^^^^^^^^^^^^^^
+
+You may have noticed that all of the pointer types in the LLVM IR example had
+an explicit address space specifier. What is address space 1? NVIDIA GPU
+devices (generally) have four types of memory:
+
+- Global: Large, off-chip memory
+- Shared: Small, on-chip memory shared among all threads in a CTA
+- Local: Per-thread, private memory
+- Constant: Read-only memory shared across all threads
+
+These different types of memory are represented in LLVM IR as address spaces.
+There is also a fifth address space used by the NVPTX code generator that
+corresponds to the "generic" address space. This address space can represent
+addresses in any other address space (with a few exceptions). This allows
+users to write IR functions that can load/store memory using the same
+instructions. Intrinsics are provided to convert pointers between the generic
+and non-generic address spaces.
+
+See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.
+
+
+Kernel Metadata
+^^^^^^^^^^^^^^^
+
+In PTX, a function can be either a `kernel` function (callable from the host
+program), or a `device` function (callable only from GPU code). You can think
+of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
+function as a `kernel` function, we make use of special LLVM metadata. The
+NVPTX back-end will look for a named metadata node called
+``nvvm.annotations``. This named metadata must contain a list of metadata that
+describe the IR. For our purposes, we need to declare a metadata node that
+assigns the "kernel" attribute to the LLVM IR function that should be emitted
+as a PTX `kernel` function. These metadata nodes take the form:
+
+.. code-block:: text
+
+ metadata !{<function ref>, metadata !"kernel", i32 1}
+
+For the previous example, we have:
+
+.. code-block:: llvm
+
+ !nvvm.annotations = !{!0}
+ !0 = metadata !{void (float addrspace(1)*,
+ float addrspace(1)*,
+ float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}
+
+Here, we have a single metadata declaration in ``nvvm.annotations``. This
+metadata annotates our ``@kernel`` function with the ``kernel`` attribute.
+
+
+Running the Kernel
+------------------
+
+Generating PTX from LLVM IR is all well and good, but how do we execute it on
+a real GPU device? The CUDA Driver API provides a convenient mechanism for
+loading and JIT compiling PTX to a native GPU device, and launching a kernel.
+The API is similar to OpenCL. A simple example showing how to load and
+execute our vector addition code is shown below. Note that for brevity this
+code does not perform much error checking!
+
+.. note::
+
+ You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
+ compile PTX to machine code (SASS) for a specific GPU architecture. Such
+ binaries can be loaded by the CUDA Driver API in the same way as PTX. This
+ can be useful for reducing startup time by precompiling the PTX kernels.
+
+
+.. code-block:: c++
+
+ #include <iostream>
+ #include <fstream>
+ #include <cassert>
+ #include "cuda.h"
+
+
+ void checkCudaErrors(CUresult err) {
+ assert(err == CUDA_SUCCESS);
+ }
+
+ /// main - Program entry point
+ int main(int argc, char **argv) {
+ CUdevice device;
+ CUmodule cudaModule;
+ CUcontext context;
+ CUfunction function;
+ CUlinkState linker;
+ int devCount;
+
+ // CUDA initialization
+ checkCudaErrors(cuInit(0));
+ checkCudaErrors(cuDeviceGetCount(&devCount));
+ checkCudaErrors(cuDeviceGet(&device, 0));
+
+ char name[128];
+ checkCudaErrors(cuDeviceGetName(name, 128, device));
+ std::cout << "Using CUDA Device [0]: " << name << "\n";
+
+ int devMajor, devMinor;
+ checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
+ std::cout << "Device Compute Capability: "
+ << devMajor << "." << devMinor << "\n";
+ if (devMajor < 2) {
+ std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
+ return 1;
+ }
+
+ std::ifstream t("kernel.ptx");
+ if (!t.is_open()) {
+ std::cerr << "kernel.ptx not found\n";
+ return 1;
+ }
+ std::string str((std::istreambuf_iterator<char>(t)),
+ std::istreambuf_iterator<char>());
+
+ // Create driver context
+ checkCudaErrors(cuCtxCreate(&context, 0, device));
+
+ // Create module for object
+ checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));
+
+ // Get kernel function
+ checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));
+
+ // Device data
+ CUdeviceptr devBufferA;
+ CUdeviceptr devBufferB;
+ CUdeviceptr devBufferC;
+
+ checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
+ checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
+ checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));
+
+ float* hostA = new float[16];
+ float* hostB = new float[16];
+ float* hostC = new float[16];
+
+ // Populate input
+ for (unsigned i = 0; i != 16; ++i) {
+ hostA[i] = (float)i;
+ hostB[i] = (float)(2*i);
+ hostC[i] = 0.0f;
+ }
+
+ checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
+ checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));
+
+
+ unsigned blockSizeX = 16;
+ unsigned blockSizeY = 1;
+ unsigned blockSizeZ = 1;
+ unsigned gridSizeX = 1;
+ unsigned gridSizeY = 1;
+ unsigned gridSizeZ = 1;
+
+ // Kernel parameters
+ void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };
+
+ std::cout << "Launching kernel\n";
+
+ // Kernel launch
+ checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
+ blockSizeX, blockSizeY, blockSizeZ,
+ 0, NULL, KernelParams, NULL));
+
+ // Retrieve device data
+ checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));
+
+
+ std::cout << "Results:\n";
+ for (unsigned i = 0; i != 16; ++i) {
+ std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
+ }
+
+
+ // Clean up after ourselves
+ delete [] hostA;
+ delete [] hostB;
+ delete [] hostC;
+
+ // Clean-up
+ checkCudaErrors(cuMemFree(devBufferA));
+ checkCudaErrors(cuMemFree(devBufferB));
+ checkCudaErrors(cuMemFree(devBufferC));
+ checkCudaErrors(cuModuleUnload(cudaModule));
+ checkCudaErrors(cuCtxDestroy(context));
+
+ return 0;
+ }
+
+
+You will need to link with the CUDA driver and specify the path to cuda.h.
+
+.. code-block:: text
+
+ # clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda
+
+We don't need to specify a path to ``libcuda.so`` since this is installed in a
+system location by the driver, not the CUDA toolkit.
+
+If everything goes as planned, you should see the following output when
+running the compiled program:
+
+.. code-block:: text
+
+ Using CUDA Device [0]: GeForce GTX 680
+ Device Compute Capability: 3.0
+ Launching kernel
+ Results:
+ 0 + 0 = 0
+ 1 + 2 = 3
+ 2 + 4 = 6
+ 3 + 6 = 9
+ 4 + 8 = 12
+ 5 + 10 = 15
+ 6 + 12 = 18
+ 7 + 14 = 21
+ 8 + 16 = 24
+ 9 + 18 = 27
+ 10 + 20 = 30
+ 11 + 22 = 33
+ 12 + 24 = 36
+ 13 + 26 = 39
+ 14 + 28 = 42
+ 15 + 30 = 45
+
+.. note::
+
+ You will likely see a different device identifier based on your hardware
+
+
+Tutorial: Linking with Libdevice
+================================
+
+In this tutorial, we show a simple example of linking LLVM IR with the
+libdevice library. We will use the same kernel as the previous tutorial,
+except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
+Libdevice provides an ``__nv_powf`` function that we will use.
+
+.. code-block:: llvm
+
+ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
+ target triple = "nvptx64-nvidia-cuda"
+
+ ; Intrinsic to read X component of thread ID
+ declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
+ ; libdevice function
+ declare float @__nv_powf(float, float)
+
+ define void @kernel(float addrspace(1)* %A,
+ float addrspace(1)* %B,
+ float addrspace(1)* %C) {
+ entry:
+ ; What is my ID?
+ %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
+
+ ; Compute pointers into A, B, and C
+ %ptrA = getelementptr float addrspace(1)* %A, i32 %id
+ %ptrB = getelementptr float addrspace(1)* %B, i32 %id
+ %ptrC = getelementptr float addrspace(1)* %C, i32 %id
+
+ ; Read A, B
+ %valA = load float addrspace(1)* %ptrA, align 4
+ %valB = load float addrspace(1)* %ptrB, align 4
+
+ ; Compute C = pow(A, B)
+ %valC = call float @__nv_exp2f(float %valA, float %valB)
+
+ ; Store back to C
+ store float %valC, float addrspace(1)* %ptrC, align 4
+
+ ret void
+ }
+
+ !nvvm.annotations = !{!0}
+ !0 = metadata !{void (float addrspace(1)*,
+ float addrspace(1)*,
+ float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}%
+
+
+To compile this kernel, we perform the following steps:
+
+1. Link with libdevice
+2. Internalize all but the public kernel function
+3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
+4. Optimize the linked module
+5. Codegen the module
+
+
+These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
+tools. In a complete compiler, these steps can also be performed entirely
+programmatically by setting up an appropriate pass configuration (see
+:ref:`libdevice`).
+
+.. code-block:: text
+
+ # llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
+ # opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
+ # llc -mcpu=sm_20 t2.opt.bc -o t2.ptx
+
+.. note::
+
+ The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
+ undefined variables will default to zero. It is shown here for evaluation
+ purposes.
+
+
+This gives us the following PTX (excerpt):
+
+.. code-block:: text
+
+ //
+ // Generated by LLVM NVPTX Back-End
+ //
+
+ .version 3.1
+ .target sm_20
+ .address_size 64
+
+ // .globl kernel
+ // @kernel
+ .visible .entry kernel(
+ .param .u64 kernel_param_0,
+ .param .u64 kernel_param_1,
+ .param .u64 kernel_param_2
+ )
+ {
+ .reg .pred %p<30>;
+ .reg .f32 %f<111>;
+ .reg .s32 %r<21>;
+ .reg .s64 %rl<8>;
+
+ // BB#0: // %entry
+ ld.param.u64 %rl2, [kernel_param_0];
+ mov.u32 %r3, %tid.x;
+ ld.param.u64 %rl3, [kernel_param_1];
+ mul.wide.s32 %rl4, %r3, 4;
+ add.s64 %rl5, %rl2, %rl4;
+ ld.param.u64 %rl6, [kernel_param_2];
+ add.s64 %rl7, %rl3, %rl4;
+ add.s64 %rl1, %rl6, %rl4;
+ ld.global.f32 %f1, [%rl5];
+ ld.global.f32 %f2, [%rl7];
+ setp.eq.f32 %p1, %f1, 0f3F800000;
+ setp.eq.f32 %p2, %f2, 0f00000000;
+ or.pred %p3, %p1, %p2;
+ @%p3 bra BB0_1;
+ bra.uni BB0_2;
+ BB0_1:
+ mov.f32 %f110, 0f3F800000;
+ st.global.f32 [%rl1], %f110;
+ ret;
+ BB0_2: // %__nv_isnanf.exit.i
+ abs.f32 %f4, %f1;
+ setp.gtu.f32 %p4, %f4, 0f7F800000;
+ @%p4 bra BB0_4;
+ // BB#3: // %__nv_isnanf.exit5.i
+ abs.f32 %f5, %f2;
+ setp.le.f32 %p5, %f5, 0f7F800000;
+ @%p5 bra BB0_5;
+ BB0_4: // %.critedge1.i
+ add.f32 %f110, %f1, %f2;
+ st.global.f32 [%rl1], %f110;
+ ret;
+ BB0_5: // %__nv_isinff.exit.i
+
+ ...
+
+ BB0_26: // %__nv_truncf.exit.i.i.i.i.i
+ mul.f32 %f90, %f107, 0f3FB8AA3B;
+ cvt.rzi.f32.f32 %f91, %f90;
+ mov.f32 %f92, 0fBF317200;
+ fma.rn.f32 %f93, %f91, %f92, %f107;
+ mov.f32 %f94, 0fB5BFBE8E;
+ fma.rn.f32 %f95, %f91, %f94, %f93;
+ mul.f32 %f89, %f95, 0f3FB8AA3B;
+ // inline asm
+ ex2.approx.ftz.f32 %f88,%f89;
+ // inline asm
+ add.f32 %f96, %f91, 0f00000000;
+ ex2.approx.f32 %f97, %f96;
+ mul.f32 %f98, %f88, %f97;
+ setp.lt.f32 %p15, %f107, 0fC2D20000;
+ selp.f32 %f99, 0f00000000, %f98, %p15;
+ setp.gt.f32 %p16, %f107, 0f42D20000;
+ selp.f32 %f110, 0f7F800000, %f99, %p16;
+ setp.eq.f32 %p17, %f110, 0f7F800000;
+ @%p17 bra BB0_28;
+ // BB#27:
+ fma.rn.f32 %f110, %f110, %f108, %f110;
+ BB0_28: // %__internal_accurate_powf.exit.i
+ setp.lt.f32 %p18, %f1, 0f00000000;
+ setp.eq.f32 %p19, %f3, 0f3F800000;
+ and.pred %p20, %p18, %p19;
+ @!%p20 bra BB0_30;
+ bra.uni BB0_29;
+ BB0_29:
+ mov.b32 %r9, %f110;
+ xor.b32 %r10, %r9, -2147483648;
+ mov.b32 %f110, %r10;
+ BB0_30: // %__nv_powf.exit
+ st.global.f32 [%rl1], %f110;
+ ret;
+ }
+