diff options
Diffstat (limited to 'include/llvm/Analysis/TargetTransformInfoImpl.h')
-rw-r--r-- | include/llvm/Analysis/TargetTransformInfoImpl.h | 433 |
1 files changed, 433 insertions, 0 deletions
diff --git a/include/llvm/Analysis/TargetTransformInfoImpl.h b/include/llvm/Analysis/TargetTransformInfoImpl.h new file mode 100644 index 0000000..3e02c0c --- /dev/null +++ b/include/llvm/Analysis/TargetTransformInfoImpl.h @@ -0,0 +1,433 @@ +//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// This file provides helpers for the implementation of +/// a TargetTransformInfo-conforming class. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H +#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H + +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" + +namespace llvm { + +/// \brief Base class for use as a mix-in that aids implementing +/// a TargetTransformInfo-compatible class. +class TargetTransformInfoImplBase { +protected: + typedef TargetTransformInfo TTI; + + const DataLayout *DL; + + explicit TargetTransformInfoImplBase(const DataLayout *DL) + : DL(DL) {} + +public: + // Provide value semantics. MSVC requires that we spell all of these out. + TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) + : DL(Arg.DL) {} + TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) + : DL(std::move(Arg.DL)) {} + TargetTransformInfoImplBase & + operator=(const TargetTransformInfoImplBase &RHS) { + DL = RHS.DL; + return *this; + } + TargetTransformInfoImplBase &operator=(TargetTransformInfoImplBase &&RHS) { + DL = std::move(RHS.DL); + return *this; + } + + unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) { + switch (Opcode) { + default: + // By default, just classify everything as 'basic'. + return TTI::TCC_Basic; + + case Instruction::GetElementPtr: + llvm_unreachable("Use getGEPCost for GEP operations!"); + + case Instruction::BitCast: + assert(OpTy && "Cast instructions must provide the operand type"); + if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) + // Identity and pointer-to-pointer casts are free. + return TTI::TCC_Free; + + // Otherwise, the default basic cost is used. + return TTI::TCC_Basic; + + case Instruction::IntToPtr: { + if (!DL) + return TTI::TCC_Basic; + + // An inttoptr cast is free so long as the input is a legal integer type + // which doesn't contain values outside the range of a pointer. + unsigned OpSize = OpTy->getScalarSizeInBits(); + if (DL->isLegalInteger(OpSize) && + OpSize <= DL->getPointerTypeSizeInBits(Ty)) + return TTI::TCC_Free; + + // Otherwise it's not a no-op. + return TTI::TCC_Basic; + } + case Instruction::PtrToInt: { + if (!DL) + return TTI::TCC_Basic; + + // A ptrtoint cast is free so long as the result is large enough to store + // the pointer, and a legal integer type. + unsigned DestSize = Ty->getScalarSizeInBits(); + if (DL->isLegalInteger(DestSize) && + DestSize >= DL->getPointerTypeSizeInBits(OpTy)) + return TTI::TCC_Free; + + // Otherwise it's not a no-op. + return TTI::TCC_Basic; + } + case Instruction::Trunc: + // trunc to a native type is free (assuming the target has compare and + // shift-right of the same width). + if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) + return TTI::TCC_Free; + + return TTI::TCC_Basic; + } + } + + unsigned getGEPCost(const Value *Ptr, ArrayRef<const Value *> Operands) { + // In the basic model, we just assume that all-constant GEPs will be folded + // into their uses via addressing modes. + for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) + if (!isa<Constant>(Operands[Idx])) + return TTI::TCC_Basic; + + return TTI::TCC_Free; + } + + unsigned getCallCost(FunctionType *FTy, int NumArgs) { + assert(FTy && "FunctionType must be provided to this routine."); + + // The target-independent implementation just measures the size of the + // function by approximating that each argument will take on average one + // instruction to prepare. + + if (NumArgs < 0) + // Set the argument number to the number of explicit arguments in the + // function. + NumArgs = FTy->getNumParams(); + + return TTI::TCC_Basic * (NumArgs + 1); + } + + unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, + ArrayRef<Type *> ParamTys) { + switch (IID) { + default: + // Intrinsics rarely (if ever) have normal argument setup constraints. + // Model them as having a basic instruction cost. + // FIXME: This is wrong for libc intrinsics. + return TTI::TCC_Basic; + + case Intrinsic::annotation: + case Intrinsic::assume: + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + case Intrinsic::ptr_annotation: + case Intrinsic::var_annotation: + case Intrinsic::experimental_gc_result_int: + case Intrinsic::experimental_gc_result_float: + case Intrinsic::experimental_gc_result_ptr: + case Intrinsic::experimental_gc_result: + case Intrinsic::experimental_gc_relocate: + // These intrinsics don't actually represent code after lowering. + return TTI::TCC_Free; + } + } + + bool hasBranchDivergence() { return false; } + + bool isLoweredToCall(const Function *F) { + // FIXME: These should almost certainly not be handled here, and instead + // handled with the help of TLI or the target itself. This was largely + // ported from existing analysis heuristics here so that such refactorings + // can take place in the future. + + if (F->isIntrinsic()) + return false; + + if (F->hasLocalLinkage() || !F->hasName()) + return true; + + StringRef Name = F->getName(); + + // These will all likely lower to a single selection DAG node. + if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || + Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || + Name == "fmin" || Name == "fminf" || Name == "fminl" || + Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" || + Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || + Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") + return false; + + // These are all likely to be optimized into something smaller. + if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || + Name == "exp2l" || Name == "exp2f" || Name == "floor" || + Name == "floorf" || Name == "ceil" || Name == "round" || + Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" || + Name == "llabs") + return false; + + return true; + } + + void getUnrollingPreferences(Loop *, TTI::UnrollingPreferences &) {} + + bool isLegalAddImmediate(int64_t Imm) { return false; } + + bool isLegalICmpImmediate(int64_t Imm) { return false; } + + bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, + bool HasBaseReg, int64_t Scale) { + // Guess that reg+reg addressing is allowed. This heuristic is taken from + // the implementation of LSR. + return !BaseGV && BaseOffset == 0 && Scale <= 1; + } + + bool isLegalMaskedStore(Type *DataType, int Consecutive) { return false; } + + bool isLegalMaskedLoad(Type *DataType, int Consecutive) { return false; } + + int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, + bool HasBaseReg, int64_t Scale) { + // Guess that all legal addressing mode are free. + if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) + return 0; + return -1; + } + + bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; } + + bool isProfitableToHoist(Instruction *I) { return true; } + + bool isTypeLegal(Type *Ty) { return false; } + + unsigned getJumpBufAlignment() { return 0; } + + unsigned getJumpBufSize() { return 0; } + + bool shouldBuildLookupTables() { return true; } + + TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) { + return TTI::PSK_Software; + } + + bool haveFastSqrt(Type *Ty) { return false; } + + unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; } + + unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; } + + unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, + Type *Ty) { + return TTI::TCC_Free; + } + + unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, + Type *Ty) { + return TTI::TCC_Free; + } + + unsigned getNumberOfRegisters(bool Vector) { return 8; } + + unsigned getRegisterBitWidth(bool Vector) { return 32; } + + unsigned getMaxInterleaveFactor() { return 1; } + + unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, + TTI::OperandValueKind Opd1Info, + TTI::OperandValueKind Opd2Info, + TTI::OperandValueProperties Opd1PropInfo, + TTI::OperandValueProperties Opd2PropInfo) { + return 1; + } + + unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index, + Type *SubTp) { + return 1; + } + + unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { return 1; } + + unsigned getCFInstrCost(unsigned Opcode) { return 1; } + + unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { + return 1; + } + + unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { + return 1; + } + + unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace) { + return 1; + } + + unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace) { + return 1; + } + + unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, + ArrayRef<Type *> Tys) { + return 1; + } + + unsigned getNumberOfParts(Type *Tp) { return 0; } + + unsigned getAddressComputationCost(Type *Tp, bool) { return 0; } + + unsigned getReductionCost(unsigned, Type *, bool) { return 1; } + + unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; } + + bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) { + return false; + } + + Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, + Type *ExpectedType) { + return nullptr; + } +}; + +/// \brief CRTP base class for use as a mix-in that aids implementing +/// a TargetTransformInfo-compatible class. +template <typename T> +class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase { +private: + typedef TargetTransformInfoImplBase BaseT; + +protected: + explicit TargetTransformInfoImplCRTPBase(const DataLayout *DL) + : BaseT(DL) {} + +public: + // Provide value semantics. MSVC requires that we spell all of these out. + TargetTransformInfoImplCRTPBase(const TargetTransformInfoImplCRTPBase &Arg) + : BaseT(static_cast<const BaseT &>(Arg)) {} + TargetTransformInfoImplCRTPBase(TargetTransformInfoImplCRTPBase &&Arg) + : BaseT(std::move(static_cast<BaseT &>(Arg))) {} + TargetTransformInfoImplCRTPBase & + operator=(const TargetTransformInfoImplCRTPBase &RHS) { + BaseT::operator=(static_cast<const BaseT &>(RHS)); + return *this; + } + TargetTransformInfoImplCRTPBase & + operator=(TargetTransformInfoImplCRTPBase &&RHS) { + BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); + return *this; + } + + using BaseT::getCallCost; + + unsigned getCallCost(const Function *F, int NumArgs) { + assert(F && "A concrete function must be provided to this routine."); + + if (NumArgs < 0) + // Set the argument number to the number of explicit arguments in the + // function. + NumArgs = F->arg_size(); + + if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { + FunctionType *FTy = F->getFunctionType(); + SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); + return static_cast<T *>(this) + ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); + } + + if (!static_cast<T *>(this)->isLoweredToCall(F)) + return TTI::TCC_Basic; // Give a basic cost if it will be lowered + // directly. + + return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs); + } + + unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) { + // Simply delegate to generic handling of the call. + // FIXME: We should use instsimplify or something else to catch calls which + // will constant fold with these arguments. + return static_cast<T *>(this)->getCallCost(F, Arguments.size()); + } + + using BaseT::getIntrinsicCost; + + unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, + ArrayRef<const Value *> Arguments) { + // Delegate to the generic intrinsic handling code. This mostly provides an + // opportunity for targets to (for example) special case the cost of + // certain intrinsics based on constants used as arguments. + SmallVector<Type *, 8> ParamTys; + ParamTys.reserve(Arguments.size()); + for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) + ParamTys.push_back(Arguments[Idx]->getType()); + return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys); + } + + unsigned getUserCost(const User *U) { + if (isa<PHINode>(U)) + return TTI::TCC_Free; // Model all PHI nodes as free. + + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { + SmallVector<const Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end()); + return static_cast<T *>(this) + ->getGEPCost(GEP->getPointerOperand(), Indices); + } + + if (ImmutableCallSite CS = U) { + const Function *F = CS.getCalledFunction(); + if (!F) { + // Just use the called value type. + Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); + return static_cast<T *>(this) + ->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); + } + + SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end()); + return static_cast<T *>(this)->getCallCost(F, Arguments); + } + + if (const CastInst *CI = dyn_cast<CastInst>(U)) { + // Result of a cmp instruction is often extended (to be used by other + // cmp instructions, logical or return instructions). These are usually + // nop on most sane targets. + if (isa<CmpInst>(CI->getOperand(0))) + return TTI::TCC_Free; + } + + return static_cast<T *>(this)->getOperationCost( + Operator::getOpcode(U), U->getType(), + U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr); + } +}; +} + +#endif |