summaryrefslogtreecommitdiffstats
path: root/include/llvm/Support/GenericDomTreeConstruction.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Support/GenericDomTreeConstruction.h')
-rw-r--r--include/llvm/Support/GenericDomTreeConstruction.h289
1 files changed, 289 insertions, 0 deletions
diff --git a/include/llvm/Support/GenericDomTreeConstruction.h b/include/llvm/Support/GenericDomTreeConstruction.h
new file mode 100644
index 0000000..f6bb8f4
--- /dev/null
+++ b/include/llvm/Support/GenericDomTreeConstruction.h
@@ -0,0 +1,289 @@
+//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// Generic dominator tree construction - This file provides routines to
+/// construct immediate dominator information for a flow-graph based on the
+/// algorithm described in this document:
+///
+/// A Fast Algorithm for Finding Dominators in a Flowgraph
+/// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
+///
+/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
+/// out that the theoretically slower O(n*log(n)) implementation is actually
+/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
+///
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H
+#define LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/GenericDomTree.h"
+
+namespace llvm {
+
+template<class GraphT>
+unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
+ typename GraphT::NodeType* V, unsigned N) {
+ // This is more understandable as a recursive algorithm, but we can't use the
+ // recursive algorithm due to stack depth issues. Keep it here for
+ // documentation purposes.
+#if 0
+ InfoRec &VInfo = DT.Info[DT.Roots[i]];
+ VInfo.DFSNum = VInfo.Semi = ++N;
+ VInfo.Label = V;
+
+ Vertex.push_back(V); // Vertex[n] = V;
+
+ for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
+ InfoRec &SuccVInfo = DT.Info[*SI];
+ if (SuccVInfo.Semi == 0) {
+ SuccVInfo.Parent = V;
+ N = DTDFSPass(DT, *SI, N);
+ }
+ }
+#else
+ bool IsChildOfArtificialExit = (N != 0);
+
+ SmallVector<std::pair<typename GraphT::NodeType*,
+ typename GraphT::ChildIteratorType>, 32> Worklist;
+ Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
+ while (!Worklist.empty()) {
+ typename GraphT::NodeType* BB = Worklist.back().first;
+ typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
+
+ typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
+ DT.Info[BB];
+
+ // First time we visited this BB?
+ if (NextSucc == GraphT::child_begin(BB)) {
+ BBInfo.DFSNum = BBInfo.Semi = ++N;
+ BBInfo.Label = BB;
+
+ DT.Vertex.push_back(BB); // Vertex[n] = V;
+
+ if (IsChildOfArtificialExit)
+ BBInfo.Parent = 1;
+
+ IsChildOfArtificialExit = false;
+ }
+
+ // store the DFS number of the current BB - the reference to BBInfo might
+ // get invalidated when processing the successors.
+ unsigned BBDFSNum = BBInfo.DFSNum;
+
+ // If we are done with this block, remove it from the worklist.
+ if (NextSucc == GraphT::child_end(BB)) {
+ Worklist.pop_back();
+ continue;
+ }
+
+ // Increment the successor number for the next time we get to it.
+ ++Worklist.back().second;
+
+ // Visit the successor next, if it isn't already visited.
+ typename GraphT::NodeType* Succ = *NextSucc;
+
+ typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
+ DT.Info[Succ];
+ if (SuccVInfo.Semi == 0) {
+ SuccVInfo.Parent = BBDFSNum;
+ Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
+ }
+ }
+#endif
+ return N;
+}
+
+template<class GraphT>
+typename GraphT::NodeType*
+Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
+ typename GraphT::NodeType *VIn, unsigned LastLinked) {
+ typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
+ DT.Info[VIn];
+ if (VInInfo.DFSNum < LastLinked)
+ return VIn;
+
+ SmallVector<typename GraphT::NodeType*, 32> Work;
+ SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
+
+ if (VInInfo.Parent >= LastLinked)
+ Work.push_back(VIn);
+
+ while (!Work.empty()) {
+ typename GraphT::NodeType* V = Work.back();
+ typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
+ DT.Info[V];
+ typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
+
+ // Process Ancestor first
+ if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
+ Work.push_back(VAncestor);
+ continue;
+ }
+ Work.pop_back();
+
+ // Update VInfo based on Ancestor info
+ if (VInfo.Parent < LastLinked)
+ continue;
+
+ typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
+ DT.Info[VAncestor];
+ typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
+ typename GraphT::NodeType* VLabel = VInfo.Label;
+ if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
+ VInfo.Label = VAncestorLabel;
+ VInfo.Parent = VAInfo.Parent;
+ }
+
+ return VInInfo.Label;
+}
+
+template<class FuncT, class NodeT>
+void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
+ FuncT& F) {
+ typedef GraphTraits<NodeT> GraphT;
+
+ unsigned N = 0;
+ bool MultipleRoots = (DT.Roots.size() > 1);
+ if (MultipleRoots) {
+ typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
+ DT.Info[NULL];
+ BBInfo.DFSNum = BBInfo.Semi = ++N;
+ BBInfo.Label = NULL;
+
+ DT.Vertex.push_back(NULL); // Vertex[n] = V;
+ }
+
+ // Step #1: Number blocks in depth-first order and initialize variables used
+ // in later stages of the algorithm.
+ for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
+ i != e; ++i)
+ N = DFSPass<GraphT>(DT, DT.Roots[i], N);
+
+ // it might be that some blocks did not get a DFS number (e.g., blocks of
+ // infinite loops). In these cases an artificial exit node is required.
+ MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
+
+ // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
+ // bucket for each vertex. However, this is unnecessary, because each vertex
+ // is only placed into a single bucket (that of its semidominator), and each
+ // vertex's bucket is processed before it is added to any bucket itself.
+ //
+ // Instead of using a bucket per vertex, we use a single array Buckets that
+ // has two purposes. Before the vertex V with preorder number i is processed,
+ // Buckets[i] stores the index of the first element in V's bucket. After V's
+ // bucket is processed, Buckets[i] stores the index of the next element in the
+ // bucket containing V, if any.
+ SmallVector<unsigned, 32> Buckets;
+ Buckets.resize(N + 1);
+ for (unsigned i = 1; i <= N; ++i)
+ Buckets[i] = i;
+
+ for (unsigned i = N; i >= 2; --i) {
+ typename GraphT::NodeType* W = DT.Vertex[i];
+ typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
+ DT.Info[W];
+
+ // Step #2: Implicitly define the immediate dominator of vertices
+ for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
+ typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
+ typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
+ DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
+ }
+
+ // Step #3: Calculate the semidominators of all vertices
+
+ // initialize the semi dominator to point to the parent node
+ WInfo.Semi = WInfo.Parent;
+ typedef GraphTraits<Inverse<NodeT> > InvTraits;
+ for (typename InvTraits::ChildIteratorType CI =
+ InvTraits::child_begin(W),
+ E = InvTraits::child_end(W); CI != E; ++CI) {
+ typename InvTraits::NodeType *N = *CI;
+ if (DT.Info.count(N)) { // Only if this predecessor is reachable!
+ unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
+ if (SemiU < WInfo.Semi)
+ WInfo.Semi = SemiU;
+ }
+ }
+
+ // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
+ // necessarily parent(V). In this case, set idom(V) here and avoid placing
+ // V into a bucket.
+ if (WInfo.Semi == WInfo.Parent) {
+ DT.IDoms[W] = DT.Vertex[WInfo.Parent];
+ } else {
+ Buckets[i] = Buckets[WInfo.Semi];
+ Buckets[WInfo.Semi] = i;
+ }
+ }
+
+ if (N >= 1) {
+ typename GraphT::NodeType* Root = DT.Vertex[1];
+ for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
+ typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
+ DT.IDoms[V] = Root;
+ }
+ }
+
+ // Step #4: Explicitly define the immediate dominator of each vertex
+ for (unsigned i = 2; i <= N; ++i) {
+ typename GraphT::NodeType* W = DT.Vertex[i];
+ typename GraphT::NodeType*& WIDom = DT.IDoms[W];
+ if (WIDom != DT.Vertex[DT.Info[W].Semi])
+ WIDom = DT.IDoms[WIDom];
+ }
+
+ if (DT.Roots.empty()) return;
+
+ // Add a node for the root. This node might be the actual root, if there is
+ // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
+ // which postdominates all real exits if there are multiple exit blocks, or
+ // an infinite loop.
+ typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
+
+ DT.DomTreeNodes[Root] = DT.RootNode =
+ new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
+
+ // Loop over all of the reachable blocks in the function...
+ for (unsigned i = 2; i <= N; ++i) {
+ typename GraphT::NodeType* W = DT.Vertex[i];
+
+ DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
+ if (BBNode) continue; // Haven't calculated this node yet?
+
+ typename GraphT::NodeType* ImmDom = DT.getIDom(W);
+
+ assert(ImmDom || DT.DomTreeNodes[NULL]);
+
+ // Get or calculate the node for the immediate dominator
+ DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
+ DT.getNodeForBlock(ImmDom);
+
+ // Add a new tree node for this BasicBlock, and link it as a child of
+ // IDomNode
+ DomTreeNodeBase<typename GraphT::NodeType> *C =
+ new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
+ DT.DomTreeNodes[W] = IDomNode->addChild(C);
+ }
+
+ // Free temporary memory used to construct idom's
+ DT.IDoms.clear();
+ DT.Info.clear();
+ std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
+
+ DT.updateDFSNumbers();
+}
+
+}
+
+#endif