summaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64TargetTransformInfo.cpp')
-rw-r--r--lib/Target/AArch64/AArch64TargetTransformInfo.cpp385
1 files changed, 371 insertions, 14 deletions
diff --git a/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
index e2a1647..33e482a 100644
--- a/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
+++ b/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
@@ -1,4 +1,4 @@
-//===- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass ---------===//
+//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
//
// The LLVM Compiler Infrastructure
//
@@ -14,15 +14,18 @@
///
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "aarch64tti"
#include "AArch64.h"
#include "AArch64TargetMachine.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
using namespace llvm;
+#define DEBUG_TYPE "aarch64tti"
+
// Declare the pass initialization routine locally as target-specific passes
// don't have a target-wide initialization entry point, and so we rely on the
// pass constructor initialization.
@@ -33,25 +36,28 @@ void initializeAArch64TTIPass(PassRegistry &);
namespace {
class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
+ const AArch64TargetMachine *TM;
const AArch64Subtarget *ST;
const AArch64TargetLowering *TLI;
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the result needs to be inserted and/or extracted from vectors.
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
+
public:
- AArch64TTI() : ImmutablePass(ID), ST(0), TLI(0) {
+ AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
llvm_unreachable("This pass cannot be directly constructed");
}
AArch64TTI(const AArch64TargetMachine *TM)
- : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
+ : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
TLI(TM->getTargetLowering()) {
initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
}
- virtual void initializePass() override {
- pushTTIStack(this);
- }
+ void initializePass() override { pushTTIStack(this); }
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
TargetTransformInfo::getAnalysisUsage(AU);
}
@@ -59,31 +65,37 @@ public:
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
- virtual void *getAdjustedAnalysisPointer(const void *ID) override {
+ void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
- return (TargetTransformInfo*)this;
+ return (TargetTransformInfo *)this;
return this;
}
/// \name Scalar TTI Implementations
/// @{
+ unsigned getIntImmCost(int64_t Val) const;
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
+ unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override;
+ PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
/// @}
-
/// \name Vector TTI Implementations
/// @{
- unsigned getNumberOfRegisters(bool Vector) const {
+ unsigned getNumberOfRegisters(bool Vector) const override {
if (Vector) {
if (ST->hasNEON())
return 32;
return 0;
}
- return 32;
+ return 31;
}
- unsigned getRegisterBitWidth(bool Vector) const {
+ unsigned getRegisterBitWidth(bool Vector) const override {
if (Vector) {
if (ST->hasNEON())
return 128;
@@ -92,6 +104,26 @@ public:
return 64;
}
+ unsigned getMaximumUnrollFactor() const override { return 2; }
+
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
+ override;
+
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
+ override;
+
+ unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Opd1Info = OK_AnyValue,
+ OperandValueKind Opd2Info = OK_AnyValue) const
+ override;
+
+ unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
+
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
+ override;
+
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const override;
/// @}
};
@@ -105,3 +137,328 @@ ImmutablePass *
llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
return new AArch64TTI(TM);
}
+
+/// \brief Calculate the cost of materializing a 64-bit value. This helper
+/// method might only calculate a fraction of a larger immediate. Therefore it
+/// is valid to return a cost of ZERO.
+unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
+ // Check if the immediate can be encoded within an instruction.
+ if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
+ return 0;
+
+ if (Val < 0)
+ Val = ~Val;
+
+ // Calculate how many moves we will need to materialize this constant.
+ unsigned LZ = countLeadingZeros((uint64_t)Val);
+ return (64 - LZ + 15) / 16;
+}
+
+/// \brief Calculate the cost of materializing the given constant.
+unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ // Sign-extend all constants to a multiple of 64-bit.
+ APInt ImmVal = Imm;
+ if (BitSize & 0x3f)
+ ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
+
+ // Split the constant into 64-bit chunks and calculate the cost for each
+ // chunk.
+ unsigned Cost = 0;
+ for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
+ APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
+ int64_t Val = Tmp.getSExtValue();
+ Cost += getIntImmCost(Val);
+ }
+ // We need at least one instruction to materialze the constant.
+ return std::max(1U, Cost);
+}
+
+unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TCC_Free;
+
+ unsigned ImmIdx = ~0U;
+ switch (Opcode) {
+ default:
+ return TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr.
+ if (Idx == 0)
+ return 2 * TCC_Basic;
+ return TCC_Free;
+ case Instruction::Store:
+ ImmIdx = 0;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ ImmIdx = 1;
+ break;
+ // Always return TCC_Free for the shift value of a shift instruction.
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Idx == 1)
+ return TCC_Free;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ case Instruction::BitCast:
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Select:
+ case Instruction::Ret:
+ case Instruction::Load:
+ break;
+ }
+
+ if (Idx == ImmIdx) {
+ unsigned NumConstants = (BitSize + 63) / 64;
+ unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TCC_Basic)
+ ? static_cast<unsigned>(TCC_Free) : Cost;
+ }
+ return AArch64TTI::getIntImmCost(Imm, Ty);
+}
+
+unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TCC_Free;
+
+ switch (IID) {
+ default:
+ return TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ if (Idx == 1) {
+ unsigned NumConstants = (BitSize + 63) / 64;
+ unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TCC_Basic)
+ ? static_cast<unsigned>(TCC_Free) : Cost;
+ }
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
+ }
+ return AArch64TTI::getIntImmCost(Imm, Ty);
+}
+
+AArch64TTI::PopcntSupportKind
+AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ if (TyWidth == 32 || TyWidth == 64)
+ return PSK_FastHardware;
+ // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
+ return PSK_Software;
+}
+
+unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ EVT SrcTy = TLI->getValueType(Src);
+ EVT DstTy = TLI->getValueType(Dst);
+
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+
+ static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
+ // LowerVectorINT_TO_FP:
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ // LowerVectorFP_TO_INT
+ { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 4 },
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 4 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 4 },
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 4 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 4 },
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 4 },
+ };
+
+ int Idx = ConvertCostTableLookup<MVT>(
+ ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return ConversionTbl[Idx].Cost;
+
+ return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
+}
+
+unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ if (Index != -1U) {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
+
+ // This type is legalized to a scalar type.
+ if (!LT.second.isVector())
+ return 0;
+
+ // The type may be split. Normalize the index to the new type.
+ unsigned Width = LT.second.getVectorNumElements();
+ Index = Index % Width;
+
+ // The element at index zero is already inside the vector.
+ if (Index == 0)
+ return 0;
+ }
+
+ // All other insert/extracts cost this much.
+ return 2;
+}
+
+unsigned AArch64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ OperandValueKind Opd1Info,
+ OperandValueKind Opd2Info) const {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+
+ switch (ISD) {
+ default:
+ return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
+ Opd2Info);
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::XOR:
+ case ISD::OR:
+ case ISD::AND:
+ // These nodes are marked as 'custom' for combining purposes only.
+ // We know that they are legal. See LowerAdd in ISelLowering.
+ return 1 * LT.first;
+ }
+}
+
+unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ // In many cases the address computation is not merged into the instruction
+ // addressing mode.
+ return 1;
+}
+
+unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const {
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ // We don't lower vector selects well that are wider than the register width.
+ if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
+ // We would need this many instructions to hide the scalarization happening.
+ unsigned AmortizationCost = 20;
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ VectorSelectTbl[] = {
+ { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
+ { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
+ };
+
+ EVT SelCondTy = TLI->getValueType(CondTy);
+ EVT SelValTy = TLI->getValueType(ValTy);
+ if (SelCondTy.isSimple() && SelValTy.isSimple()) {
+ int Idx =
+ ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
+ SelValTy.getSimpleVT());
+ if (Idx != -1)
+ return VectorSelectTbl[Idx].Cost;
+ }
+ }
+ return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) const {
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
+
+ if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
+ Src->getVectorElementType()->isIntegerTy(64)) {
+ // Unaligned stores are extremely inefficient. We don't split
+ // unaligned v2i64 stores because the negative impact that has shown in
+ // practice on inlined memcpy code.
+ // We make v2i64 stores expensive so that we will only vectorize if there
+ // are 6 other instructions getting vectorized.
+ unsigned AmortizationCost = 6;
+
+ return LT.first * 2 * AmortizationCost;
+ }
+
+ if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
+ Src->getVectorNumElements() < 8) {
+ // We scalarize the loads/stores because there is not v.4b register and we
+ // have to promote the elements to v.4h.
+ unsigned NumVecElts = Src->getVectorNumElements();
+ unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
+ // We generate 2 instructions per vector element.
+ return NumVectorizableInstsToAmortize * NumVecElts * 2;
+ }
+
+ return LT.first;
+}